linear_fit = LinearRegression().fit(x, y) logit_fit = LogisticRegression().fit(x, y.ravel()) prob_fit = GaussianNB().fit(x, y.ravel()) coef_mat = np.column_stack((prob_fit.theta.T, logit_fit.coef_, linear_fit.coef_)) print(coef_mat) prop_mat = np.column_stack((prob_fit.theta_.T / logit_fit.coef_, prob_fit.theta_.T / linear_fit.coef_, logit_fit.coef_ / linear_fit.coef_))
时间: 2024-04-23 21:22:09 浏览: 46
logistic_regression.rar_Logistic_MATLAB logistic_logistic 回归_ma
这段代码看起来是进行了一些机器学习中的模型拟合和系数计算。首先,使用 LinearRegression、LogisticRegression 和 GaussianNB 分别对输入数据 x 和 y 进行拟合,得到线性回归、逻辑回归和高斯朴素贝叶斯模型的系数。接着,将这些系数按列方向拼接成一个矩阵 coef_mat,用于后续的分析。最后,计算三种模型系数之间的比例,得到一个比例矩阵 prop_mat,也用于后续的分析。具体分析的内容需要看后续代码,但是这段代码的作用是先进行模型拟合,然后计算模型系数并进行比较和分析。
阅读全文