基于八叉树的3d点体素化以及可视化python代码
时间: 2024-02-18 17:00:49 浏览: 134
以下是一个简单的基于八叉树的3D点体素化和可视化的Python代码示例:
```python
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
class Octree:
def __init__(self, center, half_size, depth=0, max_depth=5):
self.center = center
self.half_size = half_size
self.depth = depth
self.max_depth = max_depth
self.children = [None] * 8
def insert(self, point):
if self.depth == self.max_depth:
return
index = 0
if point[0] > self.center[0]:
index |= 4
if point[1] > self.center[1]:
index |= 2
if point[2] > self.center[2]:
index |= 1
if self.children[index] is None:
half_size = self.half_size / 2
child_center = np.zeros(3)
if index & 4:
child_center[0] = self.center[0] + half_size
else:
child_center[0] = self.center[0] - half_size
if index & 2:
child_center[1] = self.center[1] + half_size
else:
child_center[1] = self.center[1] - half_size
if index & 1:
child_center[2] = self.center[2] + half_size
else:
child_center[2] = self.center[2] - half_size
self.children[index] = Octree(child_center, half_size, self.depth + 1, self.max_depth)
self.children[index].insert(point)
def visualize(self, ax):
if self.depth == self.max_depth:
ax.scatter(self.center[0], self.center[1], self.center[2], color='red')
return
for child in self.children:
if child is not None:
child.visualize(ax)
def main():
# Generate random 3D points within a cube
points = np.random.rand(100, 3)
# Create octree
center = np.array([0.5, 0.5, 0.5])
half_size = 0.5
octree = Octree(center, half_size, max_depth=4)
for point in points:
octree.insert(point)
# Visualize octree
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
octree.visualize(ax)
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
ax.set_zlim([0, 1])
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.show()
if __name__ == '__main__':
main()
```
该代码生成了100个随机3D点,并将它们插入到一个深度为4的八叉树中。然后,使用matplotlib库中的3D散点图将八叉树可视化。在可视化中,每个叶子节点用红色点表示。
阅读全文