黄金正弦差分进化算法matlab
时间: 2023-10-08 18:06:48 浏览: 150
差分进化算法matlab实现
5星 · 资源好评率100%
黄金正弦差分进化算法(Golden Sine Differential Evolution,GSDE)是一种优化算法,结合了正弦函数和黄金分割比例的思想。它可以用于解决各种优化问题,例如函数优化、工程优化等。
以下是使用Matlab实现GSDE算法的示例代码:
```matlab
function [x_best, f_best] = GSDE(fobj, dim, lb, ub, max_iter, NP, F, CR)
% GSDE: Golden Sine Differential Evolution Algorithm
% fobj: function handle for objective function
% dim: number of dimensions
% lb: lower bound of decision variables
% ub: upper bound of decision variables
% max_iter: maximum number of iterations
% NP: population size
% F: differential weight
% CR: crossover rate
% initialization
pop = lb + rand(NP, dim) .* (ub - lb); % initial population
fitness = feval(fobj, pop); % fitness evaluation
[x_best, idx] = min(pop); % best solution
f_best = fitness(idx);
% main loop
for iter = 1:max_iter
% update population
for i = 1:NP
% select three different parents
idx = randperm(NP, 3);
p1 = pop(idx(1), :);
p2 = pop(idx(2), :);
p3 = pop(idx(3), :);
% generate trial vector
v = p1 + F * (p2 - p3);
% apply crossover
jrand = randi(dim);
for j = 1:dim
if rand < CR || j == jrand
u(j) = v(j);
else
u(j) = pop(i, j);
end
end
% boundary handling
u = max(u, lb);
u = min(u, ub);
% evaluate fitness
f = feval(fobj, u);
% update population if better
if f < fitness(i)
pop(i, :) = u;
fitness(i) = f;
if f < f_best
x_best = u;
f_best = f;
end
end
end
% update differential weight and crossover rate
F = 2 / pi * asin(sin(pi / 2 * F));
CR = 0.5 + 0.5 * sin(pi / 2 * CR);
end
```
其中,fobj是目标函数的句柄,dim是决策变量的维数,lb和ub分别是决策变量的下界和上界,max_iter是最大迭代次数,NP是种群大小,F是差分权重,CR是交叉率。
在使用该算法时,只需将目标函数的句柄fobj和其他参数传递给GSDE函数即可。例如,如果要最小化函数f(x)=x1^2+x2^2,可以这样调用GSDE函数:
```matlab
fobj = @(x) x(1)^2 + x(2)^2;
[x_best, f_best] = GSDE(fobj, 2, [-5, -5], [5, 5], 1000, 50, 0.8, 0.9);
```
这将使用GSDE算法寻找函数f(x)=x1^2+x2^2的最小值,其中x1和x2的范围均为[-5,5],种群大小为50,差分权重为0.8,交叉率为0.9,最大迭代次数为1000。输出最优解x_best和最优函数值f_best。
阅读全文