解释下这段代码imgs_test = imageDatastore(data_path, 'IncludeSubfolders',true, 'FileExtensions','.jpg', 'LabelSource','foldernames');
时间: 2023-12-29 09:02:29 浏览: 77
这段代码是使用 MATLAB 的 Image Processing Toolbox 中的函数 imageDatastore 创建了一个图像数据存储器对象 imgs_test。具体来说,这个对象会从指定的 data_path 文件夹中读取所有扩展名为 .jpg 的图像文件,并将它们存储为一个图像数据集合。在这个过程中,'IncludeSubfolders' 参数指定了是否包括子文件夹中的图像文件,'LabelSource' 参数指定了使用文件夹名称作为每个图像的标签。这个图像数据存储器对象可以用于训练图像分类器或者进行其他图像处理任务。
相关问题
def unzip_infer_data(src_path,target_path): ''' 解压预测数据集 ''' if(not os.path.isdir(target_path)): z = zipfile.ZipFile(src_path, 'r') z.extractall(path=target_path) z.close() def load_image(img_path): ''' 预测图片预处理 ''' img = Image.open(img_path) if img.mode != 'RGB': img = img.convert('RGB') img = img.resize((224, 224), Image.BILINEAR) img = np.array(img).astype('float32') img = img.transpose((2, 0, 1)) # HWC to CHW img = img/255 # 像素值归一化 return img infer_src_path = '/home/aistudio/data/data55032/archive_test.zip' infer_dst_path = '/home/aistudio/data/archive_test' unzip_infer_data(infer_src_path,infer_dst_path) para_state_dict = paddle.load("MyCNN") model = MyCNN() model.set_state_dict(para_state_dict) #加载模型参数 model.eval() #验证模式 #展示预测图片 infer_path='data/archive_test/alexandrite_6.jpg' img = Image.open(infer_path) plt.imshow(img) #根据数组绘制图像 plt.show() #显示图像 #对预测图片进行预处理 infer_imgs = [] infer_imgs.append(load_image(infer_path)) infer_imgs = np.array(infer_imgs) label_dic = train_parameters['label_dict'] for i in range(len(infer_imgs)): data = infer_imgs[i] dy_x_data = np.array(data).astype('float32') dy_x_data=dy_x_data[np.newaxis,:, : ,:] img = paddle.to_tensor (dy_x_data) out = model(img) lab = np.argmax(out.numpy()) #argmax():返回最大数的索引 print("第{}个样本,被预测为:{},真实标签为:{}".format(i+1,label_dic[str(lab)],infer_path.split('/')[-1].split("_")[0])) print("结束") 以上代码进行DNN预测,根据这段代码写一段续写一段利用这个模型进行宝石预测的GUI界面,其中包含预测结果是否正确的判断功能
好的,以下是一个简单的GUI界面的代码,可以利用模型进行宝石预测,并且包含预测结果是否正确的判断功能。
```python
import tkinter as tk
from tkinter import filedialog
from PIL import Image, ImageTk
import numpy as np
import paddle
class MyCNN(paddle.nn.Layer):
# 省略模型定义,保持与上述代码一致
def unzip_infer_data(src_path,target_path):
''' 解压预测数据集 '''
if(not os.path.isdir(target_path)):
z = zipfile.ZipFile(src_path, 'r')
z.extractall(path=target_path)
z.close()
def load_image(img_path):
''' 预测图片预处理 '''
img = Image.open(img_path)
if img.mode != 'RGB':
img = img.convert('RGB')
img = img.resize((224, 224), Image.BILINEAR)
img = np.array(img).astype('float32')
img = img.transpose((2, 0, 1)) # HWC to CHW
img = img/255 # 像素值归一化
return img
def predict(image_path, model):
label_dic = train_parameters['label_dict']
data = load_image(image_path)
dy_x_data = np.array(data).astype('float32')
dy_x_data = dy_x_data[np.newaxis,:, : ,:]
img = paddle.to_tensor(dy_x_data)
out = model(img)
lab = np.argmax(out.numpy()) #argmax():返回最大数的索引
return label_dic[str(lab)], label_dic
def check_result(predicted_label, true_label):
if predicted_label == true_label:
return True
else:
return False
class App:
def __init__(self, root):
self.root = root
self.model = MyCNN()
para_state_dict = paddle.load("MyCNN")
self.model.set_state_dict(para_state_dict)
self.model.eval() #验证模式
self.label_dic = train_parameters['label_dict']
self.true_label = ''
self.predicted_label = ''
self.result_label = ''
self.canvas = tk.Canvas(root, width=300, height=300)
self.canvas.pack(side='left')
self.frame = tk.Frame(root)
self.frame.pack(side='right', padx=10)
self.select_image_button = tk.Button(
self.frame,
text='选择图片',
command=self.select_image)
self.select_image_button.pack(pady=10)
self.predict_button = tk.Button(
self.frame,
text='预测',
command=self.predict)
self.predict_button.pack(pady=10)
self.result_label = tk.Label(self.frame, text='')
self.result_label.pack(pady=10)
def select_image(self):
file_path = filedialog.askopenfilename()
if file_path:
self.image_path = file_path
self.show_image()
def show_image(self):
image = Image.open(self.image_path)
image = image.resize((300, 300))
self.photo = ImageTk.PhotoImage(image)
self.canvas.create_image(0, 0, anchor='nw', image=self.photo)
def predict(self):
if hasattr(self, 'image_path'):
self.true_label = self.image_path.split('/')[-1].split("_")[0]
self.predicted_label, label_dic = predict(self.image_path, self.model)
result = check_result(self.predicted_label, self.true_label)
if result:
self.result_label.config(text='预测结果正确')
else:
self.result_label.config(text='预测结果错误')
if __name__ == '__main__':
infer_src_path = '/home/aistudio/data/data55032/archive_test.zip'
infer_dst_path = '/home/aistudio/data/archive_test'
unzip_infer_data(infer_src_path, infer_dst_path)
train_parameters = {'label_dict': {'0': 'alexandrite', '1': 'aquamarine', '2': 'diamond', '3': 'emerald', '4': 'opal', '5': 'pearl', '6': 'peridot', '7': 'ruby', '8': 'sapphire', '9': 'spinel', '10': 'tanzanite', '11': 'topaz', '12': 'tourmaline', '13': 'tsavorite'}}
root = tk.Tk()
app = App(root)
root.mainloop()
```
你可以把以上代码保存为.py文件,在命令行中运行即可看到GUI界面。界面包含一个选择图片的按钮和一个预测按钮。选择图片后,点击预测按钮可以进行宝石预测,并且会显示预测结果是否正确。
import torch, os, cv2 from model.model import parsingNet from utils.common import merge_config from utils.dist_utils import dist_print import torch import scipy.special, tqdm import numpy as np import torchvision.transforms as transforms from data.dataset import LaneTestDataset from data.constant import culane_row_anchor, tusimple_row_anchor if __name__ == "__main__": torch.backends.cudnn.benchmark = True args, cfg = merge_config() dist_print('start testing...') assert cfg.backbone in ['18','34','50','101','152','50next','101next','50wide','101wide'] if cfg.dataset == 'CULane': cls_num_per_lane = 18 elif cfg.dataset == 'Tusimple': cls_num_per_lane = 56 else: raise NotImplementedError net = parsingNet(pretrained = False, backbone=cfg.backbone,cls_dim = (cfg.griding_num+1,cls_num_per_lane,4), use_aux=False).cuda() # we dont need auxiliary segmentation in testing state_dict = torch.load(cfg.test_model, map_location='cpu')['model'] compatible_state_dict = {} for k, v in state_dict.items(): if 'module.' in k: compatible_state_dict[k[7:]] = v else: compatible_state_dict[k] = v net.load_state_dict(compatible_state_dict, strict=False) net.eval() img_transforms = transforms.Compose([ transforms.Resize((288, 800)), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ]) if cfg.dataset == 'CULane': splits = ['test0_normal.txt', 'test1_crowd.txt', 'test2_hlight.txt', 'test3_shadow.txt', 'test4_noline.txt', 'test5_arrow.txt', 'test6_curve.txt', 'test7_cross.txt', 'test8_night.txt'] datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, 'list/test_split/'+split),img_transform = img_transforms) for split in splits] img_w, img_h = 1640, 590 row_anchor = culane_row_anchor elif cfg.dataset == 'Tusimple': splits = ['test.txt'] datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, split),img_transform = img_transforms) for split in splits] img_w, img_h = 1280, 720 row_anchor = tusimple_row_anchor else: raise NotImplementedError for split, dataset in zip(splits, datasets): loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle = False, num_workers=1) fourcc = cv2.VideoWriter_fourcc(*'MJPG') print(split[:-3]+'avi') vout = cv2.VideoWriter(split[:-3]+'avi', fourcc , 30.0, (img_w, img_h)) for i, data in enumerate(tqdm.tqdm(loader)): imgs, names = data imgs = imgs.cuda() with torch.no_grad(): out = net(imgs) col_sample = np.linspace(0, 800 - 1, cfg.griding_num) col_sample_w = col_sample[1] - col_sample[0] out_j = out[0].data.cpu().numpy() out_j = out_j[:, ::-1, :] prob = scipy.special.softmax(out_j[:-1, :, :], axis=0) idx = np.arange(cfg.griding_num) + 1 idx = idx.reshape(-1, 1, 1) loc = np.sum(prob * idx, axis=0) out_j = np.argmax(out_j, axis=0) loc[out_j == cfg.griding_num] = 0 out_j = loc # import pdb; pdb.set_trace() vis = cv2.imread(os.path.join(cfg.data_root,names[0])) for i in range(out_j.shape[1]): if np.sum(out_j[:, i] != 0) > 2: for k in range(out_j.shape[0]): if out_j[k, i] > 0: ppp = (int(out_j[k, i] * col_sample_w * img_w / 800) - 1, int(img_h * (row_anchor[cls_num_per_lane-1-k]/288)) - 1 ) cv2.circle(vis,ppp,5,(0,255,0),-1) vout.write(vis) vout.release()
这是一个使用PyTorch框架测试模型的代码,代码中导入了许多必要的库以及自定义的模型和数据集等。通过调用PyTorch的后端,启用一些加速技术,然后解析配置参数,并根据数据集类型设置类别数。创建一个模型实例,传入必要的参数并将其转移到GPU上以加速处理。最后进行模型测试。
阅读全文
相关推荐
















