代码解释clf = DecisionTreeClassifier() clf.fit(x_train,y_train) predict_target = clf.predict(x_test) print(sum(predict_target == y_test)) #预测结果与真实结果比对 print(metrics.classification_report(y_test,predict_target)) print(metrics.confusion_matrix(y_test,predict_target)) L1 = [n[0] for n in x_test] L2 = [n[1] for n in x_test] plt.scatter(L1,L2, c=predict_target,marker='x') plt.title('DecisionTreeClassifier') plt.show()
时间: 2024-03-18 22:45:11 浏览: 68
这段代码是一个基于决策树算法的分类器,主要分为以下几个步骤:
1. 创建一个决策树分类器对象clf。
2. 使用clf.fit()方法对训练数据x_train和标签y_train进行拟合训练。
3. 使用clf.predict()方法对测试数据x_test进行预测。
4. 使用sum(predict_target == y_test)计算预测结果与真实结果相同的数量。
5. 使用metrics.classification_report()和metrics.confusion_matrix()方法计算分类器的性能指标,分别是分类报告和混淆矩阵。
6. 创建两个列表L1和L2,用于将测试数据x_test中的第一列和第二列分别存储到列表中。
7. 使用plt.scatter()方法将测试数据x_test的第一列和第二列绘制成散点图,并将预测结果predict_target的分类用不同的颜色标记出来。
8. 使用plt.title()方法设置图表标题为“DecisionTreeClassifier”。
9. 使用plt.show()方法展示图表。
相关问题
请逐句地详细解读以下代码块 def train_model(self): self.vectorizer = TfidfVectorizer() self.X_train_tfidf = self.vectorizer.fit_transform(self.X_train) self.clf = MultinomialNB() self.clf.fit(self.X_train_tfidf, self.y_train) self.train_accuracy = accuracy_score(self.y_train, self.clf.predict(self.X_train_tfidf))
这段代码的功能是用朴素贝叶斯分类器对给定的训练集进行训练,并计算训练准确度。具体解释如下:
1. `self.vectorizer = TfidfVectorizer()`: 初始化一个 TfidfVectorizer 对象,用于将文本数据转换为词频-逆文档频率矩阵。
2. `self.X_train_tfidf = self.vectorizer.fit_transform(self.X_train)`: 将训练集文本数据 X_train 转换为词频-逆文档频率矩阵,存储在 self.X_train_tfidf 中。这个矩阵的每一行表示一个文本,每一列表示一个单词。矩阵中的每个元素表示该单词在该文本中出现的频率,乘以逆文档频率后得到的值。
3. `self.clf = MultinomialNB()`: 初始化一个朴素贝叶斯分类器对象 MultinomialNB()。
4. `self.clf.fit(self.X_train_tfidf, self.y_train)`: 用训练集的词频-逆文档频率矩阵 self.X_train_tfidf 和标签数据 self.y_train 对分类器进行训练。
5. `self.train_accuracy = accuracy_score(self.y_train, self.clf.predict(self.X_train_tfidf))`: 计算训练准确度,即用训练集对分类器进行预测并计算准确率。其中,`self.clf.predict(self.X_train_tfidf)` 返回分类器对训练集的预测结果,`accuracy_score(self.y_train, ...)` 计算分类器对训练集的预测准确率。
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix fruits = pd.read_table('fruit_data_with_colors.txt') fruits.head() fruits.shape print(fruits['fruit_name'].unique()) fruits.drop('fruit_label', axis=1).hist(bins=30, figsize=(9,9)) plt.suptitle("Histogram for each numeric input variable") plt.show() feature_names = ['mass', 'width', 'height', 'color_score'] x = fruits[feature_names] y = fruits['fruit_label'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0) scaler = MinMaxScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) logreg = LogisticRegression() logreg.fit(X_train, y_train) clf = DecisionTreeClassifier().fit(X_train, y_train) knn = KNeighborsClassifier() knn.fit(X_train, y_train) svm = SVC() svm.fit(X_train, y_train) pred = knn.predict(X_test)
你给出的代码是一个简单的机器学习分类问题的示例代码,使用的是Python中的sklearn库。该代码使用了4个输入特征来预测水果的标签,使用了4个分类器:Logistic回归、决策树、K近邻和支持向量机(SVM)。其中,MinMaxScaler用于对数据进行归一化处理,train_test_split用于将数据集分为训练集和测试集。最后使用K近邻分类器进行预测,并输出预测结果。
阅读全文