提供一段强化学习AC算法代码
时间: 2023-03-04 15:08:15 浏览: 436
以下是使用Python编写的简单强化学习Actor-Critic(AC)算法代码示例:
```
import gym
import numpy as np
import tensorflow as tf
# 设置超参数
num_episodes = 1000
learning_rate = 0.01
discount_factor = 0.99
# 初始化环境和神经网络模型
env = gym.make('CartPole-v0')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
actor_model = tf.keras.Sequential([
tf.keras.layers.Dense(24, input_shape=(state_size,), activation='relu'),
tf.keras.layers.Dense(24, activation='relu'),
tf.keras.layers.Dense(action_size, activation='softmax')
])
critic_model = tf.keras.Sequential([
tf.keras.layers.Dense(24, input_shape=(state_size,), activation='relu'),
tf.keras.layers.Dense(24, activation='relu'),
tf.keras.layers.Dense(1, activation='linear')
])
actor_optimizer = tf.keras.optimizers.Adam(learning_rate)
critic_optimizer = tf.keras.optimizers.Adam(learning_rate)
# 训练AC算法
for episode in range(num_episodes):
state = env.reset()
total_reward = 0
done = False
while not done:
# 从Actor策略中选择动作
action_probs = actor_model(np.array([state]))
action = np.random.choice(action_size, p=action_probs.numpy()[0])
# 执行动作并更新环境状态
next_state, reward, done, _ = env.step(action)
total_reward += reward
# 计算Critic的TD误差并更新参数
next_value = critic_model(np.array([next_state])).numpy()[0]
target_value = reward + discount_factor * next_value
with tf.GradientTape() as tape:
value = critic_model(np.array([state]))
td_error = tf.math.square(target_value - value)
critic_grads = tape.gradient(td_error, critic_model.trainable_variables)
critic_optimizer.apply_gradients(zip(critic_grads, critic_model.trainable_variables))
# 计算Actor的梯度并更新参数
with tf.GradientTape() as tape:
log_probs = tf.math.log(action_probs[0, action])
advantage = target_value - value
actor_loss = -log_probs * advantage
actor_grads = tape.gradient(actor_loss, actor_model.trainable_variables)
actor_optimizer.apply_gradients(zip(actor_grads, actor_model.trainable_variables))
state = next_state
# 输出训练结果
print('Episode: {}, Total Reward: {}'.format(episode, total_reward))
```
这段代码使用了TensorFlow和OpenAI Gym库。其中,`actor_model`和`critic_model`分别代表Actor和Critic神经网络模型,`actor_optimizer`和`critic_optimizer`分别代表Actor和Critic的优化器,`num_episodes`表示训练的总轮数,`learning_rate`表示学习率,`discount_factor`表示折扣因子。在每一轮训练中,首先使用Actor模型选择一个动作,然后执行该动作并更新环境状态。接着,根据Critic模型估计下一个状态的价值,并计算TD误差和优势函数。最后,使用TD误差和优
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)