执行下列代码后,得到的结果是______。 import tensorflow as tf x = tf.Variable([1., 2.]) y = tf.Variable([3., 4.]) with tf.GradientTape() as tape: f = tf.square(x) + 2*tf.square(y) + 1 df_dx, df_dy = tape.gradient(f, [x, y]) print("df_dx:", df_dx.numpy()) print("df_dy:", df_dy.numpy())
时间: 2024-03-15 09:42:14 浏览: 185
执行该代码后,控制台会输出以下结果:
df_dx: [2. 4.]
df_dy: [12. 16.]
其中,df_dx 表示 f 对 x 的梯度,df_dy 表示 f 对 y 的梯度。根据 f 的定义,可以求出它对 x 和 y 的偏导数分别为:
∂f/∂x = 2x
∂f/∂y = 4y
因此,在 x = [1., 2.] 和 y = [3., 4.] 的情况下,df_dx 和 df_dy 的值分别为:
df_dx = [2., 4.]
df_dy = [12., 16.]
相关问题
import time import tensorflow.compat.v1 as tf tf.disable_v2_behavior() from tensorflow.examples.tutorials.mnist import input_data import mnist_inference import mnist_train tf.compat.v1.reset_default_graph() EVAL_INTERVAL_SECS = 10 def evaluate(mnist): with tf.Graph().as_default() as g: #定义输入与输出的格式 x = tf.compat.v1.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input') y_ = tf.compat.v1.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input') validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels} #直接调用封装好的函数来计算前向传播的结果 y = mnist_inference.inference(x, None) #计算正确率 correcgt_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correcgt_prediction, tf.float32)) #通过变量重命名的方式加载模型 variable_averages = tf.train.ExponentialMovingAverage(0.99) variable_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variable_to_restore) #每隔10秒调用一次计算正确率的过程以检测训练过程中正确率的变化 while True: with tf.compat.v1.Session() as sess: ckpt = tf.train.get_checkpoint_state(minist_train.MODEL_SAVE_PATH) if ckpt and ckpt.model_checkpoint_path: #load the model saver.restore(sess, ckpt.model_checkpoint_path) global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] accuracy_score = sess.run(accuracy, feed_dict=validate_feed) print("After %s training steps, validation accuracy = %g" % (global_step, accuracy_score)) else: print('No checkpoint file found') return time.sleep(EVAL_INTERVAL_SECS) def main(argv=None): mnist = input_data.read_data_sets(r"D:\Anaconda123\Lib\site-packages\tensorboard\mnist", one_hot=True) evaluate(mnist) if __name__ == '__main__': tf.compat.v1.app.run()对代码进行改进
以下是对代码的改进建议:
1. 在代码开头添加注释,简要说明代码功能和使用方法。
2. 将导入模块的语句放在代码开头。
3. 将模型保存路径和评估时间间隔定义为常量,并使用有意义的变量名。
4. 将计算正确率和加载模型的过程封装为函数。
5. 在主函数中调用评估函数。
改进后的代码如下:
```
# 该代码实现了使用已训练好的模型对 MNIST 数据集进行评估
import time
import tensorflow.compat.v1 as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_inference
import mnist_train
# 定义常量
MODEL_SAVE_PATH = 'model/'
EVAL_INTERVAL_SECS = 10
def evaluate(mnist):
"""
计算模型在验证集上的正确率
"""
with tf.Graph().as_default() as g:
# 定义输入和输出格式
x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
# 直接调用封装好的函数计算前向传播结果
y = mnist_inference.inference(x, None)
# 计算正确率
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 加载模型
variable_averages = tf.train.ExponentialMovingAverage(mnist_train.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
# 在验证集上计算正确率
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
accuracy_score = sess.run(accuracy, feed_dict={x: mnist.validation.images, y_: mnist.validation.labels})
print("After %s training steps, validation accuracy = %g" % (global_step, accuracy_score))
else:
print('No checkpoint file found')
def main(argv=None):
# 读取数据集
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
# 每隔一定时间评估模型在验证集上的正确率
while True:
evaluate(mnist)
time.sleep(EVAL_INTERVAL_SECS)
if __name__ == '__main__':
tf.app.run()
```
优化这段代码:import tensorflow as tf import numpy as np # 加载数据集 mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 # 定义模型 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax')]) # 编译模型 model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(x_train, y_train, epochs=5) # 生成对抗样本 epsilon = 0.1 x_adv = tf.Variable(x_test[:1000], dtype=tf.float32) y_true = tf.Variable(y_test[:1000], dtype=tf.int64) with tf.GradientTape() as tape: tape.watch(x_adv) y_pred = model(x_adv) loss = tf.keras.losses.sparse_categorical_crossentropy(y_true, y_pred) grad = tape.gradient(loss, x_adv) normed_grad = tf.sign(grad) x_adv = x_adv + epsilon * normed_grad # 评估模型在对抗样本上的性能 model.evaluate(x_adv, y_true)
下面是优化后的代码:
```python
import tensorflow as tf
import numpy as np
# 加载数据集
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# 定义模型
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
# 编译模型
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train, epochs=5)
# 生成对抗样本
epsilon = 0.1
x_adv = x_test[:1000]
y_true = y_test[:1000]
# 使用tf.GradientTape计算梯度
def get_grads(model, x, y):
with tf.GradientTape() as tape:
tape.watch(x)
y_pred = model(x)
loss = tf.keras.losses.sparse_categorical_crossentropy(y, y_pred)
return tape.gradient(loss, x)
# 对抗样本生成函数
def generate_adv_example(model, x, y, epsilon):
grad = tf.sign(get_grads(model, x, y))
return x + epsilon * grad
x_adv = generate_adv_example(model, x_adv, y_true, epsilon)
# 评估模型在对抗样本上的性能
model.evaluate(x_adv, y_true)
```
优化后的代码主要做了以下几个方面的改进:
1. 对抗样本生成过程封装成了函数 `generate_adv_example()`,提高了代码的复用性。
2. 使用了 `get_grads()` 函数来计算梯度,避免了重复计算梯度的问题。
3. 去掉了 `tf.Variable` 的使用,避免了不必要的内存开销。
4. 代码风格更加规范,易于阅读。
阅读全文