python中pandas读取数据时保留某几列
时间: 2023-07-28 14:15:41 浏览: 177
在pandas中,可以使用`usecols`参数来选择需要保留的列。例如,如果我们有一个名为`data.csv`的数据集,其中有4列,我们只想保留其中的2列,可以使用以下代码:
```python
import pandas as pd
# 读取数据集,只保留第1列和第3列
data = pd.read_csv('data.csv', usecols=[0,2])
# 打印保留的列
print(data.columns)
```
这将只选择第1列和第3列,并将其存储在一个名为`data`的pandas DataFrame中。我们可以使用`data.columns`打印保留的列名。
相关问题
python pandas读取csv某几列
### 回答1:
在Python中,可以使用pandas库来读取csv文件,并只读取其中的某几列。以下是一个示例代码用于实现该功能:
```python
import pandas as pd
# 读取csv文件
df = pd.read_csv('file.csv')
# 选择要读取的列
selected_columns = ['column1', 'column2', 'column3'] # 替换为实际需要读取的列名
# 读取选定的列
selected_data = df[selected_columns]
# 打印读取结果
print(selected_data)
```
在上述代码中,首先使用`pd.read_csv()`函数读取csv文件,并将其存储为一个DataFrame对象df。接着,通过将需要读取的列名存储在一个列表selected_columns中,可以选择性地读取其中的某几列数据。最后,将选定的列存储在一个新的DataFrame对象selected_data中,并利用`print()`函数输出获取到的数据。
需要注意的是,代码中的'file.csv'应该替换为实际的csv文件的路径。另外,在selected_columns列表中,需要将'column1', 'column2', 'column3'替换为实际需要读取的列名。如果需要读取更多列,可以在列表中添加相应的列名。
### 回答2:
在Python中使用Pandas库可以轻松地读取CSV文件并提取所需的列。首先,我们需要导入Pandas库。使用以下代码可以实现此功能:
```python
import pandas as pd
# 读取CSV文件
data = pd.read_csv('file.csv')
# 提取某几列并保存在新的DataFrame中
cols_to_extract = ['column1', 'column2', 'column3']
extracted_data = data[cols_to_extract]
```
在上述代码中,我们首先使用`read_csv()`函数从CSV文件中读取数据,并将其存储在名为`data`的DataFrame中。
然后,我们在`cols_to_extract`列表中指定了我们想要提取的列名。只需将所需的列名替换为您想要的列名即可。
最后,通过使用`extracted_data = data[cols_to_extract]`将提取的列存储在名为`extracted_data`的新DataFrame中。
注意,提取的列的顺序将与在`cols_to_extract`列表中的顺序相同。
希望这可以帮助你理解如何使用Python Pandas库来读取CSV文件并提取所需的列。
### 回答3:
使用Python的pandas库可以很方便地读取CSV文件并选择只读取其中的某几列。首先,我们需要导入pandas库:
```python
import pandas as pd
```
然后,我们可以使用pandas的read_csv函数读取CSV文件,并通过指定参数usecols选择只读取某几列。usecols参数可以接受一个列表,其中包含了我们想要读取的列的名称或索引。
假设我们有一个名为data.csv的CSV文件,其中包含了三列数据"Column1"、"Column2"和"Column3"。现在,我们想要只读取"Column1"和"Column3"这两列的数据,可以使用以下代码:
```python
df = pd.read_csv('data.csv', usecols=['Column1', 'Column3'])
```
这样,pandas就会读取CSV文件中的"Column1"和"Column3"两列,并将数据存储在一个DataFrame对象df中。
如果我们想要读取指定列的索引而非列名,可以传递列的索引号给usecols参数。例如,如果"Column1"的索引是0,而"Column3"的索引是2,那么代码可以如下所示:
```python
df = pd.read_csv('data.csv', usecols=[0, 2])
```
这样,pandas就会读取CSV文件中的第0列和第2列,并将数据存储在DataFrame对象df中。
综上所述,使用Python的pandas库,我们可以轻松地读取CSV文件并选择只读取其中的某几列。通过使用read_csv函数和指定usecols参数,我们可以传递列名或索引给它来实现这一功能。
Python用pandas提取Excel表中某几列中每行数据中最大值的重复个数并存入新的一列
可以使用 Pandas 中的 apply 函数结合 lambda 表达式来实现。
假设要提取的 Excel 表格文件名为 "data.xlsx",要提取的列为 "A" 和 "B",要求在新的一列 "Max Count" 中存储每行数据中最大值的重复个数,则可以按照以下步骤操作:
首先,导入 Pandas 库并读取 Excel 表格文件:
```python
import pandas as pd
df = pd.read_excel("data.xlsx")
```
接下来,定义一个函数用于计算每行数据中最大值的重复个数:
```python
def count_max(row):
max_val = max(row["A"], row["B"])
return row[row == max_val].count()
```
然后,使用 apply 函数和 lambda 表达式将该函数应用到每一行数据上,并将结果存储到新的一列 "Max Count" 中:
```python
df["Max Count"] = df.apply(lambda row: count_max(row), axis=1)
```
最后,将处理后的数据保存到 Excel 表格文件中:
```python
df.to_excel("output.xlsx", index=False)
```
这样就能够提取 Excel 表格中某几列中每行数据中最大值的重复个数并存入新的一列了。
阅读全文