请给我keras下的CNN与transformer结合的网络代码
时间: 2023-03-21 14:03:33 浏览: 205
对于这个问题,我可以提供一些参考。Keras中可以使用CNN和Transformer结合的网络,可以参考这份GitHub代码:https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/examples/cnn_transformer/cnn_transformer.py。另外,还可以参考一些博客,如:https://medium.com/@zawlin_win/cnn-transformer-for-image-captioning-f0a05b34d2b1。
相关问题
可以找到CNN与transformer混合框架图像分割代码
以下是一个使用CNN和Transformer混合框架进行图像分割的代码示例:
```
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
class VisionTransformer(keras.Model):
def __init__(self, num_classes, patch_size=16, num_layers=12, d_model=768, num_heads=12, mlp_dim=3072, channels=3):
super(VisionTransformer, self).__init__()
self.patch_size = patch_size
self.num_layers = num_layers
self.d_model = d_model
self.num_heads = num_heads
self.mlp_dim = mlp_dim
# CNN backbone
self.backbone = keras.applications.ResNet50V2(include_top=False, weights='imagenet', input_shape=(None, None, channels))
# Patch and flatten
self.patch_and_flatten = layers.Sequential([
layers.Reshape((-1, patch_size * patch_size * channels)),
layers.Dense(d_model),
])
# Positional encoding
self.positional_encoding = layers.Embedding(input_dim=10000, output_dim=d_model)
# Transformer layers
self.transformer_layers = [TransformerBlock(d_model, num_heads, mlp_dim) for _ in range(num_layers)]
# Classification head
self.classification_head = layers.Dense(num_classes)
def call(self, inputs):
# CNN backbone
cnn_features = self.backbone(inputs)
# Patch and flatten
patches = tf.image.extract_patches(cnn_features, sizes=[1, self.patch_size, self.patch_size, 1], strides=[1, self.patch_size, self.patch_size, 1], rates=[1, 1, 1, 1], padding='SAME')
patches = tf.reshape(patches, (-1, patches.shape[1], self.patch_size * self.patch_size * 3))
patches = self.patch_and_flatten(patches)
# Positional encoding
positions = tf.range(start=0, limit=patches.shape[1], delta=1)
position_embeddings = self.positional_encoding(positions)
# Add positional embeddings to patches
patches += position_embeddings
# Transformer layers
for transformer_layer in self.transformer_layers:
patches = transformer_layer(patches)
# Classification head
outputs = self.classification_head(patches[:, 0, :])
return outputs
class TransformerBlock(keras.layers.Layer):
def __init__(self, d_model, num_heads, mlp_dim, dropout_rate=0.1):
super(TransformerBlock, self).__init__()
self.multi_head_attention = keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model)
self.dropout1 = keras.layers.Dropout(dropout_rate)
self.layer_norm1 = keras.layers.LayerNormalization(epsilon=1e-6)
self.mlp = keras.Sequential([
keras.layers.Dense(mlp_dim, activation=keras.activations.gelu),
keras.layers.Dropout(dropout_rate),
keras.layers.Dense(d_model),
keras.layers.Dropout(dropout_rate),
])
self.layer_norm2 = keras.layers.LayerNormalization(epsilon=1e-6)
def call(self, inputs):
attention_output = self.multi_head_attention(inputs, inputs)
attention_output = self.dropout1(attention_output)
attention_output = self.layer_norm1(inputs + attention_output)
mlp_output = self.mlp(attention_output)
mlp_output = self.dropout2(mlp_output)
mlp_output = self.layer_norm2(attention_output + mlp_output)
return mlp_output
```
这个代码使用ResNet50V2作为CNN骨干网络,然后使用Transformer块对提取的图像补丁进行处理。最后,通过全连接层进行分类。你可以通过修改这个代码来完成你的图像分割任务。
transformer与cnn结合模型
将Transformer与CNN结合可以有效地编码局部处理和全局交互。一种简单的方法是将卷积和Vision Transformer结合起来。最近的研究表明,将卷积和Vision Transformer串联在一起,无论是在开始时使用卷积,还是将卷积插入到每个Transformer块中都是有益的。另外,使用卷积作为Transformer*** Transformers See Better。
以下是一个将CNN和Transformer结合的模型的示例代码:
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, Dense, Dropout
from tensorflow.keras.layers import MultiHeadAttention, LayerNormalization
from tensorflow.keras.models import Model
# 定义CNN部分
input_cnn = Input(shape=(224, 224, 3))
x = Conv2D(64, (3, 3), activation='relu')(input_cnn)
x = Conv2D(64, (3, 3), activation='relu')(x)
x = Conv2D(128, (3, 3), activation='relu')(x)
x = Conv2D(128, (3, 3), activation='relu')(x)
x = Conv2D(256, (3, 3), activation='relu')(x)
x = Conv2D(256, (3, 3), activation='relu')(x)
x = Conv2D(512, (3, 3), activation='relu')(x)
x = Conv2D(512, (3, 3), activation='relu')(x)
x = Conv2D(1024, (3, 3), activation='relu')(x)
x = Conv2D(1024, (3, 3), activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(1024, activation='relu')(x)
output_cnn = Dense(512, activation='relu')(x)
# 定义Transformer部分
input_transformer = Input(shape=(512,))
x = LayerNormalization()(input_transformer)
x = MultiHeadAttention(num_heads=8, key_dim=64)(x, x)
x = Dropout(0.5)(x)
x = LayerNormalization()(x)
x = Dense(512, activation='relu')(x)
output_transformer = Dense(512, activation='relu')(x)
# 将CNN和Transformer连接起来
merged = tf.keras.layers.concatenate([output_cnn, output_transformer])
output = Dense(10, activation='softmax')(merged)
model = Model(inputs=[input_cnn, input_transformer], outputs=output)
```
阅读全文