用tensorflow写一个cnn和transformer组合的分类代码
时间: 2024-05-06 18:16:43 浏览: 151
好的,以下是一个使用TensorFlow实现CNN和Transformer组合的分类代码:
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv1D, MaxPooling1D, Flatten, Dense, Dropout
from tensorflow.keras.layers import LayerNormalization, MultiHeadAttention, Dense, Input, Flatten
from tensorflow.keras.models import Model
class CNNTransformer(Model):
def __init__(self, num_filters, filter_sizes, d_model, num_heads, ff_dim, num_classes, max_seq_len, dropout_rate=0.1):
super(CNNTransformer, self).__init__()
# Convolution Layers
self.conv_layers = []
for filter_size in filter_sizes:
conv_layer = Conv1D(num_filters, filter_size, activation='relu')
self.conv_layers.append(conv_layer)
# Transformer Layers
self.transformer_layers = []
for i in range(2):
transformer_layer = tf.keras.Sequential([
LayerNormalization(epsilon=1e-6),
MultiHeadAttention(num_heads=num_heads, key_dim=d_model),
Dropout(dropout_rate),
LayerNormalization(epsilon=1e-6),
Dense(ff_dim, activation='relu'),
Dropout(dropout_rate),
Dense(d_model),
Dropout(dropout_rate)
])
self.transformer_layers.append(transformer_layer)
# Flatten Layer
self.flatten = Flatten()
# Output Layer
self.output_layer = Dense(num_classes, activation='softmax')
# Set max sequence length
self.max_seq_len = max_seq_len
def call(self, inputs, training=True):
# Convolution Layers
conv_output = []
for conv_layer in self.conv_layers:
conv_output.append(conv_layer(inputs))
conv_output = tf.concat(conv_output, axis=-1)
# Transformer Layers
transformer_output = tf.reshape(conv_output, [-1, self.max_seq_len, conv_output.shape[-1]])
for transformer_layer in self.transformer_layers:
transformer_output = transformer_layer(transformer_output, training=training)
# Flatten Layer
flatten_output = self.flatten(transformer_output)
# Output Layer
output = self.output_layer(flatten_output)
return output
```
在上面的代码中,我们首先定义了一个`CNNTransformer`类,它继承自`tf.keras.Model`。在类的构造函数中,我们传入了许多超参数,包括卷积层的数量、卷积核的数量和大小、Transformer层的数量、多头注意力机制的头数、前馈神经网络的维度、分类的类别数量、序列的最大长度和dropout率等。然后我们在构造函数中定义了卷积层、Transformer层、Flatten层和输出层。
在`call()`方法中,我们首先将输入传递给卷积层,然后将它们的输出连接在一起。然后我们将卷积层的输出重塑为一个三维张量,并将其传递给Transformer层。最后,我们将Transformer层的输出展平,并将其传递给输出层进行分类。
接下来,我们可以使用这个类来构建我们的模型,如下所示:
```python
num_filters = 64
filter_sizes = [3, 4, 5]
d_model = 128
num_heads = 8
ff_dim = 512
num_classes = 10
max_seq_len = 100
model = CNNTransformer(num_filters, filter_sizes, d_model, num_heads, ff_dim, num_classes, max_seq_len, dropout_rate=0.1)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
```
在这个例子中,我们使用了三个不同大小的卷积核,分别为3、4和5,每个卷积核有64个过滤器。我们使用了两个Transformer层,每个层有8个头和128个隐藏单元。我们使用了一个512维的前馈神经网络,并且使用了dropout率为0.1。最后,我们使用分类交叉熵作为损失函数,Adam优化器进行优化,并使用准确度作为评估指标。
希望这个例子能够帮助你理解如何在TensorFlow中实现CNN和Transformer组合的分类模型。
阅读全文