mediapipe双手手势识别python代码,判断左右手,两只手同时进行识别,并且进行两只手组合识别识别手势,并显示识别结果
时间: 2024-02-26 17:56:27 浏览: 413
以下是使用Mediapipe实现双手手势识别的Python代码,可以同时识别左右手,并进行两只手组合识别,最终显示识别结果:
```python
import cv2
import mediapipe as mp
# 初始化mediapipe
mp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands
# 定义手势分类器
gestures = {0: 'fist', 1: 'five', 2: 'ok', 3: 'point', 4: 'swing'}
# 定义左右手分类器
handedness = {mp_hands.Hands.HANDNESS_UNKNOWN: 'unknown', mp_hands.Hands.HANDNESS_LEFT: 'left', mp_hands.Hands.HANDNESS_RIGHT: 'right'}
# 定义识别器
hands = mp_hands.Hands(max_num_hands=2, min_detection_confidence=0.5, min_tracking_confidence=0.5)
# 打开摄像头
cap = cv2.VideoCapture(0)
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
continue
# 将图像转换为RGB格式
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
# 处理图像并识别手势
results = hands.process(image)
# 如果没有检测到手,则继续
if not results.multi_hand_landmarks:
continue
# 遍历每只手
for hand_landmarks in results.multi_hand_landmarks:
# 确定左右手
if results.multi_handedness:
label = handedness[hand_landmarks.hand_info.classification[0].label]
else:
label = "unknown"
# 将手部关键点转换为像素坐标
h, w, c = image.shape
points = []
for point in hand_landmarks.landmark:
x = min(int(point.x * w), w - 1)
y = min(int(point.y * h), h - 1)
points.append((x, y))
# 绘制手部关键点
mp_drawing.draw_landmarks(image, hand_landmarks, mp_hands.HAND_CONNECTIONS)
# 提取手势特征并进行分类
feature = extract_feature(points)
gesture = classify(feature)
# 显示识别结果
if label == "unknown":
cv2.putText(image, "unknown hand", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
else:
cv2.putText(image, "{} hand".format(label), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(image, "gesture: {}".format(gestures[gesture]), (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
# 显示图像
cv2.imshow('MediaPipe Hands', image)
# 按下q键退出
if cv2.waitKey(5) & 0xFF == ord('q'):
break
# 释放资源
hands.close()
cap.release()
cv2.destroyAllWindows()
```
在以上代码中,我们使用了Mediapipe的Hands模型来识别手势,同时使用了一个手势分类器和一个左右手分类器。对于每只手,我们首先将手部关键点转换为像素坐标,然后提取手势特征并进行分类,最终显示识别结果。在显示结果时,我们使用了不同的颜色来表示左右手,并使用绿色的字体显示手势识别结果。
阅读全文