from sklearn.model_selection import train_test_split X_train,X_test,Y_train,Y_test = train_test_split(data.drop('creditability',axis = 1),data['creditability'],test_size = 0.25,random_state = 450) data_train = pd.concat([X_train,Y_train],axis=1) 详细解释一下
时间: 2023-06-19 21:07:23 浏览: 69
python中导入 train_test_split提示错误的解决
5星 · 资源好评率100%
这段代码使用了Scikit-learn库中的train_test_split函数,将数据集按照指定的比例(test_size参数)划分为训练集和测试集。其中,data.drop('creditability',axis = 1)表示将data数据集中的creditability列删除,剩余的列作为特征矩阵X,data['creditability']则表示目标变量Y。接着,将X和Y分别按照划分好的比例进行划分,得到训练集X_train和Y_train,测试集X_test和Y_test。最后,将X_train和Y_train按照列方向(axis=1)合并成一个新的数据集data_train,用于后续的模型训练。其中,random_state参数用于设置随机数种子,保证每次划分结果的一致性。
阅读全文