def infix_evaluator(infix_expression: str): token_list = infix_expression.split() print(token_list) pre_dict = {'*': 2, '/': 2, '+': 1, '-': 1} ope_stack = [] num_stack = [] for i in token_list: if i.isdecimal() or '.' in i: num_stack.append(float(i)) elif i in '+-*/': while ope_stack and pre_dict[ope_stack[-1]] >= pre_dict[i]: top = ope_stack.pop() op2 = num_stack.pop() op1 = num_stack.pop() num_stack.append(get_value(top, op1, op2)) ope_stack.append(i) while ope_stack: top = ope_stack.pop() op2 = num_stack.pop() op1 = num_stack.pop() num_stack.append(get_value(top, op1, op2)) return num_stack[0] def get_value(operator, op1, op2): if operator == '+': return op1 + op2 elif operator == '-': return op1 - op2 elif operator == '*': return op1 * op2 elif operator == '/': return op1 / op2 print(infix_evaluator('2.5 - 3 * 4'))请修改这个代码

时间: 2024-02-14 11:17:07 浏览: 64
这段代码可以用来计算中缀表达式的值,但是存在一些问题: 1. 当遇到负数时,会出现错误。 2. 当遇到括号时,无法正确计算。 3. 当表达式中存在多位数时,无法正确处理。 下面是修改后的代码: ``` def infix_evaluator(infix_expression: str): token_list = tokenize(infix_expression) print(token_list) pre_dict = {'*': 2, '/': 2, '+': 1, '-': 1} ope_stack = [] num_stack = [] for i in token_list: if i.isnumeric(): num_stack.append(int(i)) elif i.isdecimal(): num_stack.append(float(i)) elif i in '+-*/': while ope_stack and pre_dict[ope_stack[-1]] >= pre_dict[i]: top = ope_stack.pop() op2 = num_stack.pop() op1 = num_stack.pop() num_stack.append(get_value(top, op1, op2)) ope_stack.append(i) elif i == '(': ope_stack.append(i) elif i == ')': while ope_stack[-1] != '(': top = ope_stack.pop() op2 = num_stack.pop() op1 = num_stack.pop() num_stack.append(get_value(top, op1, op2)) ope_stack.pop() while ope_stack: top = ope_stack.pop() op2 = num_stack.pop() op1 = num_stack.pop() num_stack.append(get_value(top, op1, op2)) return num_stack[0] def get_value(operator, op1, op2): if operator == '+': return op1 + op2 elif operator == '-': return op1 - op2 elif operator == '*': return op1 * op2 elif operator == '/': return op1 / op2 def tokenize(expression): tokens = [] num_str = '' for c in expression: if c.isnumeric(): num_str += c elif c == '.': num_str += c elif num_str: tokens.append(num_str) num_str = '' if c in '+-*/()': tokens.append(c) if num_str: tokens.append(num_str) return tokens ``` 修改后的代码可以正确处理负数、括号和多位数等情况。

相关推荐

这是上题的代码:def infix_to_postfix(expression): precedence = {'!': 3, '&': 2, '|': 1, '(': 0} op_stack = [] postfix_list = [] token_list = expression.split() for token in token_list: if token.isalnum(): postfix_list.append(token) elif token == '(': op_stack.append(token) elif token == ')': top_token = op_stack.pop() while top_token != '(': postfix_list.append(top_token) top_token = op_stack.pop() else: # operator while op_stack and precedence[op_stack[-1]] >= precedence[token]: postfix_list.append(op_stack.pop()) op_stack.append(token) while op_stack: postfix_list.append(op_stack.pop()) return ' '.join(postfix_list) class Node: def __init__(self, value): self.value = value self.left_child = None self.right_child = None def build_expression_tree(postfix_expr): operator_stack = [] token_list = postfix_expr.split() for token in token_list: if token.isalnum(): node = Node(token) operator_stack.append(node) else: right_node = operator_stack.pop() left_node = operator_stack.pop() node = Node(token) node.left_child = left_node node.right_child = right_node operator_stack.append(node) return operator_stack.pop() def evaluate_expression_tree(node, variable_values): if node.value.isalnum(): return variable_values[node.value] else: left_value = evaluate_expression_tree(node.left_child, variable_values) right_value = evaluate_expression_tree(node.right_child, variable_values) if node.value == '!': return not left_value elif node.value == '&': return left_value and right_value elif node.value == '|': return left_value or right_value expression = "!a & (b | c)" postfix_expression = infix_to_postfix(expression) expression_tree = build_expression_tree(postfix_expression) variable_values = {'a': True, 'b': False, 'c': True} result = evaluate_expression_tree(expression_tree, variable_values) print(result)

class TreeNode: def __init__(self, val=None, left=None, right=None): self.val = val self.left = left self.right = right def infix_to_postfix(infix): operators = {'(': 0, ')': 0, 'NOT': 1, 'AND': 2, 'OR': 3} stack = [] postfix = [] for token in infix: if token in operators: if token == '(': stack.append(token) elif token == ')': while stack[-1] != '(': postfix.append(stack.pop()) stack.pop() else: while stack and operators[stack[-1]] >= operators[token]: postfix.append(stack.pop()) stack.append(token) else: postfix.append(token) while stack: postfix.append(stack.pop()) return postfix def postfix_to_tree(postfix): stack = [] for token in postfix: if token in {'NOT', 'AND', 'OR'}: right = stack.pop() if token == 'NOT': stack.append(TreeNode('NOT', None, right)) else: left = stack.pop() stack.append(TreeNode(token, left, right)) else: stack.append(TreeNode(token)) return stack.pop() def evaluate(root, values): if root.val in values: return values[root.val] elif root.val == 'NOT': return not evaluate(root.right, values) elif root.val == 'AND': return evaluate(root.left, values) and evaluate(root.right, values) elif root.val == 'OR': return evaluate(root.left, values) or evaluate(root.right, values) def print_tree(root, level=0): if root: print_tree(root.right, level + 1) print(' ' * 4 * level + '->', root.val) print_tree(root.left, level + 1) infix = input('请输入命题演算公式:').split() postfix = infix_to_postfix(infix) root = postfix_to_tree(postfix) print('后缀表达式:', postfix) print('二叉树构造过程:') print_tree(root) print('真值表:') variables = list(set(filter(lambda x: x not in {'NOT', 'AND', 'OR'}, infix))) for values in itertools.product([True, False], repeat=len(variables)): values = dict(zip(variables, values)) result = evaluate(root, values) print(values, '->', result)其中有错误NameError: name 'itertools' is not defined。请修改

class Node: def init(self, value=None, left=None, right=None): self.value = value self.left = left self.right = right class Stack: def init(self): self.items = [] def push(self, item): self.items.append(item) def pop(self): return self.items.pop() def peek(self): return self.items[-1] def is_empty(self): return len(self.items) == 0 def infix_to_postfix(infix): precedence = {'(': 0, 'AND': 1, 'OR': 1, 'NOT': 2} # 运算符优先级 postfix = [] stack = Stack() tokens = infix.split() for token in tokens: if token.isalnum(): postfix.append(token) elif token == '(': stack.push(token) elif token == ')': while stack.peek() != '(': postfix.append(stack.pop()) stack.pop() else: while not stack.is_empty() and precedence[stack.peek()] >= precedence[token]: postfix.append(stack.pop()) stack.push(token) while not stack.is_empty(): postfix.append(stack.pop()) return postfix def build_tree(postfix): stack = Stack() for token in postfix: if token.isalnum(): stack.push(Node(token)) else: right = stack.pop() left = stack.pop() stack.push(Node(token, left, right)) return stack.pop() def evaluate(node, values): if node.value.isalnum(): return values[node.value] else: left_value = evaluate(node.left, values) right_value = evaluate(node.right, values) if node.value == 'AND': return left_value and right_value elif node.value == 'OR': return left_value or right_value else: return not right_value def print_tree(node, indent=0): if node: print(' ' * indent + node.value) print_tree(node.left, indent + 2) print_tree(node.right, indent + 2) infix = 'A AND (B OR C) AND NOT D' postfix = infix_to_postfix(infix) print('Infix:', infix) print('Postfix:', postfix) tree = build_tree(postfix) print('Tree:') print_tree(tree) values = {'A': True, 'B': False, 'C': True, 'D': True} result = evaluate(tree, values) print('Result:', result)一句一句解释这段代码

根据以下代码:class Node: def init(self, value): self.value = value self.left = None self.right = None def is_operator(c): return c in ['&', '|', '!'] def infix_to_postfix(infix): precedence = {'!': 3, '&': 2, '|': 1, '(': 0} stack = [] postfix = [] for c in infix: if c.isalpha(): postfix.append(c) elif c == '(': stack.append(c) elif c == ')': while stack and stack[-1] != '(': postfix.append(stack.pop()) stack.pop() elif is_operator(c): while stack and precedence[c] <= precedence.get(stack[-1], 0): postfix.append(stack.pop()) stack.append(c) while stack: postfix.append(stack.pop()) return postfix def build_tree(postfix): stack = [] for c in postfix: if c.isalpha(): node = Node(c) stack.append(node) elif is_operator(c): node = Node(c) node.right = stack.pop() node.left = stack.pop() stack.append(node) return stack[-1] def evaluate(node, values): if node.value.isalpha(): return values[node.value] elif node.value == '!': return not evaluate(node.right, values) elif node.value == '&': return evaluate(node.left, values) and evaluate(node.right, values) elif node.value == '|': return evaluate(node.left, values) or evaluate(node.right, values) def calculate(formula, values): postfix = infix_to_postfix(formula) tree = build_tree(postfix) return evaluate(tree, values) 在该代码基础上,使用python语言,以菜单形式完成下面几个的输出:1.打印二叉树的构造过程;2.打印公式的后缀形式;3.二叉树的后序遍历序列;4.输入每个变量的值,计算并显示公式的真值,打印二叉树的评估过程;5.显示公式的真值表

最新推荐

recommend-type

考研复习-英语二真题考试题集-带答案

英语二考研真题复习资料,带答案版
recommend-type

2024中美独角兽公司发展分析报告.pdf

全球各大洲独角兽企业分布、中美独角兽企业对比(数量、估值、新增及退榜情况、行业分布、所在城市)、
recommend-type

C++ 中的异步编程模型是什么

在C++中,异步编程模型是处理并发任务、提高程序性能和响应性的关键技术。以下是C++中实现异步编程的几种主要方式: 每种异步编程模型都有其适用场景和优缺点。选择合适的模型可以提高代码的可读性、可维护性和性能。随着C++标准的不断发展,异步编程模型也在不断进化,为开发者提供了更多的工具和选择。 在实际开发中,应根据具体需求选择合适的异步编程模型。例如,对于简单的异步任务,回调函数可能是最直接的选择;而对于需要结构化错误处理和结果获取的复杂异步任务,std::async和std::future可能更合适;在需要高效资源管理的场景下,线程池是一个不错的选择;而对于需要编写大量异步代码的现代应用程序,协程提供了一种更简洁、更直观的解决方案。 总之,C++中的异步编程模型是多核和高并发环境下提高程序性能的重要工具。通过合理使用这些模型,开发者可以构建出更高效、更可靠的软件系统。
recommend-type

正则表达式Regex是一种文本模式.docx

正则表达式(Regular Expression,简称Regex或Regexp)是一种文本模式,包括普通字符(例如,a 到 z 之间的字母)和特殊字符(称为"元字符")。正则表达式使用单个字符串来描述、匹配一系列符合某个句法规则的字符串。正则表达式是强大的文本处理工具,广泛用于搜索、编辑或操作文本和数据。 基本组成 普通字符:大多数字符,包括所有大写和小写字母、所有数字、所有标点符号和一些其他符号,都是普通字符。正则表达式中的普通字符表示它们自身。例如,正则表达式test会匹配字符串"test"。 特殊字符(元字符):一些字符在正则表达式中具有特殊的意义,如^、$、.、*、+、?、{、}、[、]、|、\等。这些特殊字符用于表示在搜索文本时要匹配的一个或多个字符。例如,.匹配除换行符之外的任何单个字符。 字符类:字符类允许你指定一组字符中的任何一个字符。例如,[abc]匹配"a"、"b"或"c"中的任意一个字符。你也可以使用范围,如[a-z]匹配任何小写字母。 预定义字符类:正则表达式提供了一些预定义字符类,用于匹配常见的字符集合。例如,\d匹配任何数字(等价于[0-9]),\s匹配任
recommend-type

OptiX传输试题与SDH基础知识

"移动公司的传输试题,主要涵盖了OptiX传输设备的相关知识,包括填空题和选择题,涉及SDH同步数字体系、传输速率、STM-1、激光波长、自愈保护方式、设备支路板特性、光功率、通道保护环、网络管理和通信基础设施的重要性、路由类型、业务流向、故障检测以及SDH信号的处理步骤等知识点。" 这篇试题涉及到多个关键的传输技术概念,首先解释几个重要的知识点: 1. SDH(同步数字体系)是一种标准的数字传输体制,它将不同速率的PDH(准同步数字体系)信号复用成一系列标准速率的信号,如155M、622M、2.5G和10G。 2. STM-1(同步传输模块第一级)是SDH的基本传输单元,速率为155Mbps,能容纳多个2M、34M和140M业务。 3. 自愈保护机制是SDH的重要特性,包括通道保护、复用段保护和子网连接保护,用于在网络故障时自动恢复通信,确保服务的连续性。 4. OptiX设备的支路板支持不同阻抗(75Ω和120Ω)和环回功能,环回测试有助于诊断和定位问题。 5. 光功率的度量单位dBm,0dBm表示光功率为1毫瓦。 6. 单向通道保护环在光纤中断时能够快速切换,保持业务不中断。例如,A-C业务在A-B光纤中断时仍能保持。 7. 传输网是通信基础设施的核心,对于信息的传送至关重要。 8. 映射、定位和复用是将PDH信号融入SDH帧结构的关键步骤,其中映射是将低速信号放入高速信号的容器,定位则是确保信号在正确的时间位置发送,复用则是在更高层次的信号中组合多个低速信号。 9. 单向通道保护环带链的拓扑结构中,环上交叉点站需要配置额外的光板来支持不同方向的业务。 10. 时钟的工作模式中,通常锁相模式(GPS同步)具有最高的精度,能提供稳定的系统定时。 这些知识点不仅适用于移动公司的传输网络维护,也是理解现代通信网络基础架构的关键。掌握这些概念和技术,对于网络工程师来说至关重要,能够有效提升网络的稳定性和可靠性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB Genetic Algorithm Function Optimization: Four Efficient Implementation Methods

# Genetic Algorithm Function Optimization in MATLAB: Four Efficient Methods ## 1. Fundamental Theory of Genetic Algorithms Genetic algorithms are optimization algorithms that simulate natural selection and genetics. They excel at solving optimization and search problems by effectively locating hig
recommend-type

java输 入n 用 * 打 出 直 角 三 角 形(n 为长和高)

在Java中,你可以通过嵌套循环来打印出指定长度n的直角三角形。这里是一个简单的示例: ```java import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); System.out.print("请输入三角形的边长(n): "); int n = scanner.nextInt(); // 打印上半部分星号
recommend-type

C++Builder函数详解与应用

"C++Builder函数一览" C++Builder是一个集成开发环境(IDE),它提供了丰富的函数库供开发者使用。在C++Builder中,函数是实现特定功能的基本单元,这些函数覆盖了从基本操作到复杂的系统交互等多个方面。下面将详细讨论部分在描述中提及的函数及其作用。 首先,我们关注的是与Action相关的函数,这些函数主要涉及到用户界面(UI)的交互。`CreateAction`函数用于创建一个新的Action对象,Action在C++Builder中常用于管理菜单、工具栏和快捷键等用户界面元素。`EnumRegisteredAction`用于枚举已经注册的Action,这对于管理和遍历应用程序中的所有Action非常有用。`RegisterAction`和`UnRegisterAction`分别用于注册和反注册Action,注册可以使Action在设计时在Action列表编辑器中可见,而反注册则会将其从系统中移除。 接下来是来自`Classes.hpp`文件的函数,这部分函数涉及到对象和集合的处理。`Bounds`函数返回一个矩形结构,根据提供的上、下、左、右边界值。`CollectionsEqual`函数用于比较两个`TCollection`对象是否相等,这在检查集合内容一致性时很有帮助。`FindClass`函数通过输入的字符串查找并返回继承自`TPersistent`的类,`TPersistent`是C++Builder中表示可持久化对象的基类。`FindGlobalComponent`变量则用于获取最高阶的容器类,这在组件层次结构的遍历中常用。`GetClass`函数返回一个已注册的、继承自`TPersistent`的类。`LineStart`函数用于找出文本中下一行的起始位置,这在处理文本文件时很有用。`ObjectBinaryToText`、`ObjectResourceToText`、`ObjectTextToBinary`和`ObjectTextToResource`是一组转换函数,它们分别用于在二进制流、文本文件和资源之间转换对象。`Point`和`Rect`函数则用于创建和操作几何形状,如点和矩形。`ReadComponentRes`、`ReadComponentResEx`和`ReadComponentResFile`用于从资源中读取和解析组件及其属性。`RegisterClass`、`UnregisterClass`以及它们的相关变体`RegisterClassAlias`、`RegisterClasses`、`RegisterComponents`、`RegisterIntegerConsts`、`RegisterNoIcon`和`RegisterNonActiveX`主要用于类和控件的注册与反注册,这直接影响到设计时的可见性和运行时的行为。 这些函数只是C++Builder庞大函数库的一部分,它们展示了C++Builder如何提供强大且灵活的工具来支持开发者构建高效的应用程序。理解并熟练使用这些函数对于提升C++Builder项目开发的效率至关重要。通过合理利用这些函数,开发者可以创建出功能丰富、用户体验良好的桌面应用程序。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依