这是上题的代码:def infix_to_postfix(expression): precedence = {'!': 3, '&': 2, '|': 1, '(': 0} op_stack = [] postfix_list = [] token_list = expression.split() for token in token_list: if token.isalnum(): postfix_list.append(token) elif token == '(': op_stack.append(token) elif token == ')': top_token = op_stack.pop() while top_token != '(': postfix_list.append(top_token) top_token = op_stack.pop() else: # operator while op_stack and precedence[op_stack[-1]] >= precedence[token]: postfix_list.append(op_stack.pop()) op_stack.append(token) while op_stack: postfix_list.append(op_stack.pop()) return ' '.join(postfix_list) class Node: def __init__(self, value): self.value = value self.left_child = None self.right_child = None def build_expression_tree(postfix_expr): operator_stack = [] token_list = postfix_expr.split() for token in token_list: if token.isalnum(): node = Node(token) operator_stack.append(node) else: right_node = operator_stack.pop() left_node = operator_stack.pop() node = Node(token) node.left_child = left_node node.right_child = right_node operator_stack.append(node) return operator_stack.pop() def evaluate_expression_tree(node, variable_values): if node.value.isalnum(): return variable_values[node.value] else: left_value = evaluate_expression_tree(node.left_child, variable_values) right_value = evaluate_expression_tree(node.right_child, variable_values) if node.value == '!': return not left_value elif node.value == '&': return left_value and right_value elif node.value == '|': return left_value or right_value expression = "!a & (b | c)" postfix_expression = infix_to_postfix(expression) expression_tree = build_expression_tree(postfix_expression) variable_values = {'a': True, 'b': False, 'c': True} result = evaluate_expression_tree(expression_tree, variable_values) print(result)
时间: 2024-02-14 16:17:05 浏览: 201
好的,感谢提供代码。以下是针对你的问题的解答:
1. 打印二叉树构造过程
在 build_expression_tree 函数中,operator_stack 列表存储了构建二叉树的过程。我们可以在函数中添加打印语句来查看二叉树构建过程。
代码如下:
```
def build_expression_tree(postfix_expr):
operator_stack = []
token_list = postfix_expr.split()
for token in token_list:
if token.isalnum():
node = Node(token)
operator_stack.append(node)
else:
right_node = operator_stack.pop()
left_node = operator_stack.pop()
node = Node(token)
node.left_child = left_node
node.right_child = right_node
operator_stack.append(node)
# 打印二叉树构建过程
print([i.value for i in operator_stack])
return operator_stack.pop()
```
在运行 build_expression_tree 函数时,将会打印出二叉树构建过程。
2. 打印后缀表达式和二叉树后序遍历序列
在函数 infix_to_postfix 中,postfix_list 列表存储了后缀表达式。我们可以在函数返回后缀表达式的同时,打印出后缀表达式。
代码如下:
```
def infix_to_postfix(expression):
precedence = {'!': 3, '&': 2, '|': 1, '(': 0}
op_stack = []
postfix_list = []
token_list = expression.split()
for token in token_list:
if token.isalnum():
postfix_list.append(token)
elif token == '(':
op_stack.append(token)
elif token == ')':
top_token = op_stack.pop()
while top_token != '(':
postfix_list.append(top_token)
top_token = op_stack.pop()
else:
# operator
while op_stack and precedence[op_stack[-1]] >= precedence[token]:
postfix_list.append(op_stack.pop())
op_stack.append(token)
while op_stack:
postfix_list.append(op_stack.pop())
# 打印后缀表达式
print(f"后缀表达式:{' '.join(postfix_list)}")
return ' '.join(postfix_list)
def build_expression_tree(postfix_expr):
operator_stack = []
token_list = postfix_expr.split()
for token in token_list:
if token.isalnum():
node = Node(token)
operator_stack.append(node)
else:
right_node = operator_stack.pop()
left_node = operator_stack.pop()
node = Node(token)
node.left_child = left_node
node.right_child = right_node
operator_stack.append(node)
# 打印二叉树构建过程
print([i.value for i in operator_stack])
return operator_stack.pop()
expression = "!a & (b | c)"
postfix_expression = infix_to_postfix(expression)
expression_tree = build_expression_tree(postfix_expression)
# 打印二叉树后序遍历序列
print("二叉树后序遍历序列:", end="")
def postorder(node):
if node:
postorder(node.left_child)
postorder(node.right_child)
print(node.value, end=" ")
postorder(expression_tree)
print()
```
在运行程序时,将会先打印出后缀表达式,然后是构建二叉树的过程,最后打印出二叉树的后序遍历序列。
3. 打印二叉树评估过程
在 evaluate_expression_tree 函数中,我们可以添加打印语句来查看二叉树评估的过程。
代码如下:
```
def evaluate_expression_tree(node, variable_values):
if node.value.isalnum():
return variable_values[node.value]
else:
left_value = evaluate_expression_tree(node.left_child, variable_values)
right_value = evaluate_expression_tree(node.right_child, variable_values)
if node.value == '!':
result = not left_value
elif node.value == '&':
result = left_value and right_value
elif node.value == '|':
result = left_value or right_value
# 打印二叉树评估过程
print(f"节点 {node.value} 的值为 {result}")
return result
expression = "!a & (b | c)"
postfix_expression = infix_to_postfix(expression)
expression_tree = build_expression_tree(postfix_expression)
variable_values = {'a': True, 'b': False, 'c': True}
result = evaluate_expression_tree(expression_tree, variable_values)
print(result)
```
在运行程序时,将会先打印出后缀表达式,然后是构建二叉树的过程,接着会打印出二叉树评估的过程。
4. 显示公式真值表
可以通过遍历变量的所有取值,来计算表达式的真值表。
代码如下:
```
expression = "!a & (b | c)"
postfix_expression = infix_to_postfix(expression)
expression_tree = build_expression_tree(postfix_expression)
# 遍历变量的所有可能取值
variable_values = {'a': True, 'b': False, 'c': True}
variable_names = list(variable_values.keys())
print(" ".join(variable_names), expression)
for i in range(2**len(variable_names)):
values = [bool(int(x)) for x in bin(i)[2:].zfill(len(variable_names))]
variable_values = dict(zip(variable_names, values))
result = evaluate_expression_tree(expression_tree, variable_values)
print(" ".join([str(int(x)) for x in values]), int(result))
```
在运行程序时,将会先打印出后缀表达式,然后是构建二叉树的过程,接着会打印出真值表。
阅读全文