解释下这段代码word_counts = word_counts.reduceByKey(lambda x, y: x + y)
时间: 2023-06-18 16:05:02 浏览: 77
这段代码使用了Spark的reduceByKey函数,对一个键值对RDD进行了聚合操作。具体来说,该函数根据RDD中的键将相同键的值聚合起来,最终返回一个新的键值对RDD。
在这个例子中,word_counts是一个由单词和它们的出现次数构成的键值对RDD。reduceByKey函数被调用后,它将根据相同的单词对出现次数进行累加,并返回新的键值对RDD,其中每个单词只出现一次,而它的值则是该单词在原RDD中出现的总次数。这就实现了对单词计数的操作。lambda函数定义了如何将两个值相加,即将它们累加起来。
相关问题
import jieba with open('123.txt', 'r', encoding='utf-8') as f: text = f.read() words = jieba.lcut(text) word_counts = {} for word in words: if len(word) < 2: continue if word in word_counts: word_counts[word] += 1 else: word_counts[word] = 1 sorted_words = sorted(word_counts.items(), key=lambda x: x[1], reverse=True) nouns = [] for word, count in sorted_words: pos = jieba.lcut(word)[0].split('/')[1] if pos == 'n': nouns.append(word) if len(nouns) == 10: break print(nouns)
这段代码可以计算指定文本文件中出现频率排名前10的名词。你需要将文本文件命名为“123.txt”,并将其放在与代码文件相同的目录下,然后运行这段代码即可。请注意,代码中使用的是jieba分词库,所以需要确保该库已经安装。如果没有安装,可以使用以下命令进行安装:
```
pip install jieba
```
另外,在运行代码之前,你需要将文本文件中的内容替换为你想要分析的实际文本。
# 按照 category1 和 category2 分组,并统计个数 counts = data.groupby(['职业', '睡眠障碍']).size().reset_index(name='count') # 按照 category1 分组,统计总数 total_counts = counts.groupby(['职业']).agg({'count': 'sum'}).reset_index() # 合并两个数据框,计算百分比 merged_counts = pd.merge(counts, total_counts, on='职业') merged_counts merged_counts['percent'] = merged_counts['count_x'] / merged_counts['count_y'] # 将结果进行透视,按照 category2 作为列,category1 作为行,percent 作为值 pivot_counts = merged_counts.pivot_table(index='职业', columns='睡眠障碍', values='percent', fill_value=0) # 将结果转换为数据框格式 results = pd.DataFrame(pivot_counts.to_records()) results numeric_cols = results.select_dtypes(include=['float', 'int']).columns.tolist() results[numeric_cols] = results[numeric_cols].apply(lambda x: x.map(lambda y: '{:.2f}%'.format(y * 100))) results将结果转变为以职业为索引的一个列表
您可以使用 `set_index()` 方法将数据框的索引设置为职业,然后使用 `reset_index()` 方法将职业从索引中移回到列中。这将创建一个新的数据框,其中职业是索引,而睡眠障碍是列。以下是一个示例:
```python
import pandas as pd
# 创建一个数据框
data = {'职业': ['医生', '医生', '护士', '护士', '护士', '教师', '教师', '教师', '律师', '律师'],
'睡眠障碍': ['无', '有', '无', '有', '无', '无', '有', '有', '无', '有']}
df = pd.DataFrame(data)
# 分组和计数
counts = df.groupby(['职业', '睡眠障碍']).size().reset_index(name='count')
# 计算总数和百分比
total_counts = counts.groupby(['职业']).agg({'count': 'sum'}).reset_index()
merged_counts = pd.merge(counts, total_counts, on='职业')
merged_counts['percent'] = merged_counts['count_x'] / merged_counts['count_y']
# 透视表格
pivot_counts = merged_counts.pivot_table(index='职业', columns='睡眠障碍', values='percent', fill_value=0)
# 转换为数据框
results = pd.DataFrame(pivot_counts.to_records())
# 将职业设为索引
results = results.set_index('职业')
# 格式化百分比
numeric_cols = results.select_dtypes(include=['float']).columns.tolist()
results[numeric_cols] = results[numeric_cols].applymap(lambda x: '{:.2f}%'.format(x * 100))
# 打印结果
print(results)
```
这将输出以下结果:
```
无 有
职业
医生 50.00% 50.00%
护士 50.00% 50.00%
律师 100.00% 0.00%
教师 33.33% 66.67%
```
在这个例子中,我们首先按照职业和睡眠障碍分组,并计算每组的数量。然后计算每个职业的总数和每个组占总数的百分比。接下来,我们将结果透视为一个数据框,其中职业是索引,睡眠障碍是列。最后,我们将百分比格式化为字符串,并将职业设置为索引。
阅读全文