#include <stdio.h> #include <stdlib.h> #include <string.h> #include <strings.h> #include <unistd.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> //#include <pthread.h> #include "../include/zcan.h" #include "../include/device.h" #include "../include/Mona_E3.h" #define RX_20_BUFF_SIZE 1000 U8 channel = 0; unsigned gDevType1 = 33;//设备号 unsigned gDevIdx1 = 0;//设备索引 Mona_E3 mona(channel); int main(int argc, char* argv[]){ ZCAN_20_MSG RX_20_buff[RX_20_BUFF_SIZE]; // can buffer U8 XCP_CANFD_Tx_Data[64]; Dev_Init(gDevType1, gDevIdx1, channel); //XCP_CANDF_TX(XCP_CANFD_Tx_Data); U32 ret = Weima_CAN_RX(RX_20_buff); printf("ret = %d\n", ret); for(U32 i=0; i<ret; ++i){ printf("i = %d\n", i); mona.transform(RX_20_buff[i]); } printf("OK\n"); VCI_CloseDevice(gDevType1, gDevIdx1); return 0; }
时间: 2024-04-26 08:26:59 浏览: 179
这是一段C语言代码,包含多个头文件和函数。根据代码中的注释,该程序使用了ZLG的CAN总线库(zcan.h)、设备库(device.h)和Mona_E3库(Mona_E3.h),通过CAN总线接收数据,并使用Mona_E3库中的函数对数据进行解析和处理。
在main函数中,首先定义了一个CAN消息缓冲区(RX_20_buff),然后调用Weima_CAN_RX函数从CAN总线接收数据,并将接收到的数据通过Mona_E3库中的transform函数进行处理。最后关闭设备并返回0。
需要注意的是,该代码中还定义了一些变量(如channel、gDevType1、gDevIdx1等),需要根据具体的应用进行设置和修改。此外,该代码中还有一些注释部分(如#include <pthread.h>),可能是被注释掉的代码或者不需要的库文件,也需要根据具体情况进行调整。
相关问题
讲解如下代码:#include <stdio.h> #include <sys/types.h> #include <sys/socket.h> #include <stdlib.h> #include <arpa/inet.h> #include <strings.h> #include <time.h> #include <string.h> #include <sys/time.h> #include <unistd.h> void print_time_usec() { struct tm
这段代码是一个简单的 C 语言程序,于打印当前时间的微秒部分。它包含了一些头文件的引用,例如stdio.h、sys/types.h、sys/socket.h等,这些头文件提供了一些函数和数据类型的定义,供后面的代码使用。
在主函数之外,有一个名为print_time_usec的函数。该函数用于获取当前时间的微秒部分,并将其打印出来。函数内部使用了struct tm结构体来存储时间信息,并通过time函数获取当前时间。然后,使用gettimeofday函数获取当前时间的微秒部分,并将其打印出来。
这段代码还使用了一些其他的函数,例如bzero函数用于将结构体清零,inet_addr函数用于将字符串形式的IP地址转换为网络字节序的整数形式,等等。整个代码的功能是获取当前时间的微秒部分并打印出来。
#include <stdio.h> #include <stdlib.h> #include<sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> #include <errno.h> #include <stropts.h> #include <time.h> #include <strings.h> #include <string.h> #include <stdio.h> #include <sys/ipc.h> #include <sys/msg.h> struct msg { long msg_types; char msg_buf[511]; }; int main(void) { int qid; int pid; int len; struct msg pmsg; pmsg.msg_types = getpid(); sprintf(pmsg.msg_buf, "hello!this is :%d\n\0", getpid()); len = strlen(pmsg.msg_buf); if ((qid = msgget(IPC_PRIVATE, IPC_CREAT | 0666)) < 0) { perror("msgget"); exit(1); } if ((msgsnd(qid, &pmsg, len, 0)) < 0) { perror("magsn"); exit(1); } printf("successfully send a message to the queue: %d \n", qid); exit(0); }的运行结果
该程序是一个使用消息队列进行进程间通信的示例程序,通过msgget()函数创建一个消息队列,通过msgsnd()函数向消息队列中发送一条消息。
运行结果可能如下:
successfully send a message to the queue: 123456
解释如下:
1.程序首先定义了一个消息结构体msg,并初始化了其中的消息类型msg_types和消息内容msg_buf。
2.程序调用msgget()函数创建一个新的消息队列,将返回的队列ID存储在变量qid中。
3.程序调用msgsnd()函数向消息队列中发送一条消息,消息内容为msg_buf中的字符串。
4.程序输出"successfully send a message to the queue: qid",表示消息发送成功。
需要注意的是,程序中将消息类型msg_types设置为了当前进程的PID,这样在接收消息时可以根据PID来获取对应的消息。同时,程序中使用了strlen()函数来获取消息内容的长度,这是为了确保发送的消息长度不超过队列的最大长度。
阅读全文