如何在pytorch中修改torchvision的resnet18的fc层

时间: 2023-05-11 08:02:45 浏览: 127
可以通过以下代码修改resnet18的fc层: ```python import torch.nn as nn import torchvision.models as models resnet18 = models.resnet18(pretrained=True) num_ftrs = resnet18.fc.in_features resnet18.fc = nn.Linear(num_ftrs, num_classes) ``` 其中,num_classes是你需要分类的类别数。
相关问题

pytorch删除预训练的resnet50fc层的参数重新训练

要删除预训练的ResNet50模型的全连接层并重新训练,可以按照以下步骤进行操作: 1. 加载ResNet50模型,同时设置 `pretrained=True` 来加载预训练参数: ``` import torch import torchvision.models as models model = models.resnet50(pretrained=True) ``` 2. 将ResNet50模型的最后一层全连接层替换为新的全连接层,该层的输出大小应该与数据集的类别数相同: ``` num_classes = 10 # 假设数据集有10个类别 # 替换ResNet50模型的最后一层全连接层 model.fc = torch.nn.Linear(in_features=2048, out_features=num_classes) ``` 3. 将模型的所有参数梯度设置为可更新: ``` for param in model.parameters(): param.requires_grad = True ``` 4. 定义损失函数和优化器: ``` criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9) ``` 5. 训练模型: ``` num_epochs = 10 for epoch in range(num_epochs): for images, labels in train_loader: outputs = model(images) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() ``` 在进行训练时,模型的预训练参数将被保留,只有最后一层全连接层的参数会被更新。

调用pytorch库中的torchvision实现resnet的迁移学习

可以使用如下代码进行迁移学习: ```python import torch from torchvision import models resnet50 = models.resnet50(pretrained=True) for param in resnet50.parameters(): param.requires_grad = False num_ftrs = resnet50.fc.in_features resnet50.fc = torch.nn.Linear(num_ftrs, 2) # 根据具体任务修改输出层 # 然后就可以将处理好的数据传入模型进行训练了 ```

相关推荐

PyTorch中的ResNet-18是一个经典的深度卷积神经网络模型,它由Microsoft Research团队提出。ResNet-18主要由卷积层、批归一化层、池化层和全连接层组成。它具有18个卷积层,包含了残差连接,可以有效地解决深度网络中的梯度消失和梯度爆炸问题。 在PyTorch中,你可以通过导入torchvision.models模块来使用预定义的ResNet-18模型。下面是一个使用ResNet-18进行图像分类的示例代码: python import torch import torchvision.models as models # 加载预训练的ResNet-18模型 model = models.resnet18(pretrained=True) # 关闭梯度计算 for param in model.parameters(): param.requires_grad = False # 替换最后的全连接层 num_classes = 10 # 根据实际情况设置类别数 model.fc = torch.nn.Linear(model.fc.in_features, num_classes) # 将模型移到GPU上(如果可用的话) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # 输入示例图像 input_image = torch.randn(1, 3, 224, 224).to(device) # 前向传播 output = model(input_image) 这段代码首先导入了torch和torchvision.models模块,然后使用models.resnet18(pretrained=True)加载了预训练的ResNet-18模型。通过设置param.requires_grad = False,我们关闭了模型的梯度计算。接下来,我们替换了模型的最后一个全连接层,并将模型移动到GPU上(如果可用的话)。最后,我们使用模型进行前向传播,输入示例图像input_image,并得到输出结果output。 这只是一个简单的示例,你可以根据自己的需求进行更多的自定义和调整。希望对你有所帮助!
### 回答1: 用 PyTorch 实现 ResNet 需要以下步骤: 1. 定义 ResNet 的基本单元,也就是残差块,它包括两个卷积层和一个残差跳跃; 2. 定义 ResNet 的不同版本,每个版本可以通过组合多个残差块实现; 3. 定义整个 ResNet 模型,并结合前面定义的版本以及全连接层。 4. 定义损失函数,例如交叉熵损失; 5. 在训练数据上训练模型,并通过验证数据评估模型性能; 6. 使用测试数据评估最终的模型性能。 以下是一个示例代码: import torch import torch.nn as nn class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(out_channels) self.downsample = downsample def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=10): super(ResNet, self).__init__ ### 回答2: ResNet(残差网络)是一种深度学习模型,PyTorch是一个开源的深度学习框架。下面是一个用PyTorch写ResNet的简单示例: 首先,我们需要导入所需的库: python import torch import torch.nn as nn import torch.optim as optim 然后,我们可以定义ResNet的基本块(basic block): python class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.shortcut = nn.Sequential() if stride != 1 or in_channels != self.expansion * out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * out_channels) ) def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out += self.shortcut(residual) out = self.relu(out) return out 接下来,我们可以定义整个ResNet模型,以ResNet50为例: python class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=1000): super(ResNet, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) def _make_layer(self, block, out_channels, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels * block.expansion return nn.Sequential(*layers) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.maxpool(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) out = torch.flatten(out, 1) out = self.fc(out) return out 最后,我们可以实例化ResNet模型并使用合适的数据进行训练和预测: python resnet = ResNet(BasicBlock, [3, 4, 6, 3]) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(resnet.parameters(), lr=0.01, momentum=0.9) # 训练模型 for epoch in range(num_epochs): # 前向传播及损失计算 outputs = resnet(inputs) loss = criterion(outputs, labels) # 反向传播及优化 optimizer.zero_grad() loss.backward() optimizer.step() # 打印状态信息 if (epoch+1) % 10 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) # 使用模型进行预测 outputs = resnet(test_inputs) 上述示例代码演示了如何使用PyTorch写一个基本的ResNet模型,并使用该模型进行训练和预测。这只是一个简单的示例,实际应用中可能需要根据具体问题对模型进行进一步的调整和优化。 ### 回答3: 使用PyTorch编写一个ResNet(深度残差网络)可以分为以下几个步骤: 1. 安装和导入PyTorch:首先,需要安装PyTorch库,并导入所需的模块和函数。可以使用以下命令进行安装: pip install torch torchvision 2. 定义ResNet模型:使用PyTorch的nn.Module类创建一个ResNet模型类。可以通过继承nn.Module类自定义网络的构建和前向传播。 python import torch.nn as nn class ResNet(nn.Module): def __init__(self): super(ResNet, self).__init__() # 定义ResNet的层和参数 def forward(self, x): # 定义ResNet的前向传播逻辑 return x 3. 定义ResNet的层和参数:在__init__方法中,定义ResNet的不同层,包括卷积层、批归一化层、残差块等。 python def __init__(self): super(ResNet, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding) self.bn1 = nn.BatchNorm2d(num_features) # 定义其他层和参数 4. 定义ResNet的前向传播逻辑:在forward方法中,定义ResNet的前向传播逻辑,按照ResNet的结构依次调用各个层,使用ReLU作为激活函数。 python def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = nn.ReLU()(out) # 调用其他层并使用ReLU return out 5. 实例化ResNet模型:在主程序中,实例化ResNet模型,并根据需要进行其他配置,如选择优化器和损失函数等。 python model = ResNet() optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() 6. 训练和评估模型:使用训练数据集对模型进行训练,并在验证数据集上评估模型的性能。 python for epoch in range(num_epochs): # 在训练数据上进行迭代以更新模型参数 with torch.no_grad(): # 在验证数据上评估模型的性能 以上是使用PyTorch编写一个ResNet模型的基本步骤。根据具体的任务和数据集,还可以进行其他的配置和调整。
### 回答1: 当然可以。以下是用PyTorch实现ResNet的代码: import torch import torch.nn as nn class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.downsample = downsample def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=10): super(ResNet, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.layer1 = self.make_layer(block, 64, layers[0]) self.layer2 = self.make_layer(block, 128, layers[1], stride=2) self.layer3 = self.make_layer(block, 256, layers[2], stride=2) self.layer4 = self.make_layer(block, 512, layers[3], stride=2) self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) def make_layer(self, block, out_channels, blocks, stride=1): downsample = None if stride != 1 or self.in_channels != out_channels * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels * block.expansion) ) layers = [] layers.append(block(self.in_channels, out_channels, stride, downsample)) self.in_channels = out_channels * block.expansion for i in range(1, blocks): layers.append(block(self.in_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avg_pool(out) out = out.view(out.size(0), -1) out = self.fc(out) return out 其中,ResNet包括多个残差块(Residual Block),每个残差块由两个卷积层和一个残差连接组成。通过make_layer函数创建每个残差 ### 回答2: 在PyTorch中编写一个ResNet模型的过程如下: 首先,我们需要导入PyTorch的相关库: python import torch import torch.nn as nn from torchvision.models import ResNet from torchvision.transforms import ToTensor 接下来,创建一个自定义的ResNet类,继承自PyTorch的nn.Module: python class MyResNet(nn.Module): def __init__(self, num_classes): super(MyResNet, self).__init__() # 加载预训练的ResNet模型 self.resnet = ResNet() # 替换最后一层全连接层,使其适应我们的任务 self.resnet.fc = nn.Linear(self.resnet.fc.in_features, num_classes) def forward(self, x): return self.resnet(x) 在构建MyResNet类时,我们加载了预训练的ResNet模型,并通过替换最后一层全连接层,将其适应我们的任务。这里的num_classes指定了模型的输出类别数。 然后,创建一个实例并传入相关参数: python model = MyResNet(num_classes=10) 我们可以将数据转换为张量并将其输入到模型中进行预测: python input_data = ToTensor()(input_data) # 将数据转换为张量 output = model(input_data) # 输入前向传播获取输出结果 最后,我们可以根据任务需求,定义损失函数和优化器,并使用反向传播来更新模型的权重: python loss_function = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.001) # 计算损失值并进行反向传播 loss = loss_function(output, target) optimizer.zero_grad() loss.backward() optimizer.step() 以上是使用PyTorch编写一个ResNet模型的基本步骤。在实际应用中,可能需要根据具体的任务和数据进行一些调整和优化。 ### 回答3: 使用PyTorch编写一个ResNet模型可以分为以下几个步骤。 首先,导入需要的库和模块。 python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms 然后,定义ResNet的基本模块,如卷积、批归一化和残差块。 python # 定义卷积块 def conv_block(in_channels, out_channels, stride=1): return nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), ) # 定义残差块 class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(ResidualBlock, self).__init__() self.conv1 = conv_block(in_channels, out_channels, stride) self.conv2 = conv_block(out_channels, out_channels) self.downsample = downsample def forward(self, x): residual = x out = self.conv1(x) out = self.conv2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = nn.ReLU(inplace=True)(out) return out 接下来,定义ResNet模型。 python class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_channels = 64 self.conv = conv_block(3, 64) self.layer1 = self.make_layer(block, 64, num_blocks[0]) self.layer2 = self.make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self.make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self.make_layer(block, 512, num_blocks[3], stride=2) self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512, num_classes) def make_layer(self, block, out_channels, num_blocks, stride=1): downsample = None if stride != 1 or self.in_channels != out_channels: downsample = nn.Sequential( nn.Conv2d(self.in_channels, out_channels, kernel_size=1, stride=stride), nn.BatchNorm2d(out_channels) ) layers = [] layers.append(block(self.in_channels, out_channels, stride, downsample)) self.in_channels = out_channels for _ in range(1, num_blocks): layers.append(block(out_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): out = self.conv(x) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avg_pool(out) out = torch.flatten(out, 1) out = self.fc(out) return out 最后,创建ResNet模型的实例并进行训练。 python # 定义超参数 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") num_epochs = 10 learning_rate = 0.001 batch_size = 128 # 加载数据集 transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # 创建ResNet模型实例 model = ResNet(ResidualBlock, [2, 2, 2, 2]).to(device) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 模型训练 total_step = len(train_loader) for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): images = images.to(device) labels = labels.to(device) # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, total_step, loss.item())) # 模型测试 model.eval() with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: images = images.to(device) labels = labels.to(device) outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('准确率: {} %'.format(100 * correct / total)) 通过上述步骤,我们可以使用PyTorch编写一个ResNet模型,并对其进行训练和测试。
好的,以下是使用PyTorch实现ResNet18的代码: 首先需要导入必要的库: python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms 然后定义ResNet18的基本模块: python class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.downsample = downsample def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out 接下来定义ResNet18网络: python class ResNet18(nn.Module): def __init__(self, block, layers, num_classes=10): super(ResNet18, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self.make_layer(block, 64, layers[0]) self.layer2 = self.make_layer(block, 128, layers[1], stride=2) self.layer3 = self.make_layer(block, 256, layers[2], stride=2) self.layer4 = self.make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) def make_layer(self, block, out_channels, blocks, stride=1): downsample = None if stride != 1 or self.in_channels != out_channels * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels * block.expansion) ) layers = [] layers.append(block(self.in_channels, out_channels, stride, downsample)) self.in_channels = out_channels * block.expansion for i in range(1, blocks): layers.append(block(self.in_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.maxpool(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) out = torch.flatten(out, 1) out = self.fc(out) return out 最后,我们可以使用定义好的ResNet18网络进行训练和测试: python # 定义超参数 device = 'cuda' if torch.cuda.is_available() else 'cpu' num_epochs = 10 batch_size = 128 learning_rate = 0.001 # 准备数据集 transform = transforms.Compose( [transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2) # 定义模型、损失函数和优化器 net = ResNet18(BasicBlock, [2, 2, 2, 2], num_classes=10).to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=learning_rate) # 训练模型 for epoch in range(num_epochs): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[Epoch %d, Batch %d] Loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data images, labels = images.to(device), labels.to(device) outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) 希望这个代码可以帮助到你!
### 回答1: 要冻结ResNet50模型的部分层,可以通过以下步骤实现: 1. 加载ResNet50模型 python import torch import torchvision.models as models resnet50 = models.resnet50(pretrained=True) 2. 冻结部分层 例如,我们想要冻结ResNet50的前四个卷积块(即前面的16个卷积层),则可以通过以下代码实现: python for param in resnet50.parameters(): param.requires_grad = False for param in resnet50.layer4.parameters(): param.requires_grad = True 在这个例子中,我们首先将所有参数的 requires_grad 属性设置为 False,这样它们就不会被更新。然后,我们将第四个卷积块中的参数的 requires_grad 属性设置为 True,这样它们就可以被更新。 3. 测试模型 python # 前向传播 x = torch.randn(1, 3, 224, 224) output = resnet50(x) # 输出 print(output.shape) 经过上述步骤后,我们可以测试模型是否能够正常运行。请注意,由于我们冻结了前面的层,因此模型的输出形状应该与完整的ResNet50模型的输出形状不同。 ### 回答2: 在使用PyTorch中的ResNet50模型时,我们可以通过冻结部分层来提高模型的训练效果和速度。冻结层是指将特定的层的参数设置为不可训练,即固定参数不再更新。这样做的目的是让模型专注于学习数据中的高级特征,而不需要重复训练低级特征的提取过程。 对于ResNet50模型,我们可以选择冻结卷积层。卷积层通常用于提取图像的低级特征,例如边缘和纹理等。这些特征通常是通用的,不会因为不同的任务而变化。因此,我们可以选择性地冻结卷积层,让模型在训练过程中不再更新这些层的参数。 在PyTorch中,要冻结部分层很简单。我们首先加载ResNet50模型,并将其所有参数设置为不可训练: python import torch import torchvision.models as models model = models.resnet50(pretrained=True) for param in model.parameters(): param.requires_grad = False 接下来,我们可以选择性地解冻某些层,以便在训练过程中更新它们的参数。例如,如果我们想要让模型仅更新最后一层的参数,我们可以这样做: python for param in model.fc.parameters(): param.requires_grad = True 这将冻结所有卷积层的参数,只允许最后一层的参数进行反向传播和更新。 最后,我们需要将模型移动到适当的设备(如GPU),并开始训练过程。 冻结部分层可以有效地加快模型训练速度,并帮助模型获得更好的学习结果。但值得注意的是,根据具体任务的复杂程度和数据集的大小,需要根据实际情况选择要冻结的层级。 ### 回答3: PyTorch中的ResNet50模型是一个非常强大的深度学习模型,由于其结构的复杂性,在某些情况下我们可能希望只训练模型的一部分层,而将其他层的参数保持不变,也就是冻结这些层的权重。下面是关于如何冻结ResNet50模型部分层的一种实现方法: 1. 导入必要的库和模块: python import torch import torchvision.models as models 2. 加载ResNet50模型: python model = models.resnet50(pretrained=True) 3. 冻结部分层: python for param in model.parameters(): param.requires_grad = False # 需要微调的层可以通过requires_grad_(True)来重新设置为可训练 model.fc.requires_grad_(True) 在上述代码中,我们首先导入了PyTorch和torchvision中的库和模块。然后,通过调用models.resnet50(pretrained=True)来加载预训练的ResNet50模型。 接下来,我们使用一个for循环来遍历模型的所有参数,并将其requires_grad属性设置为False,这样就会冻结所有的层,使其不可训练。 最后,如果我们希望微调模型的最后全连接层(即model.fc),我们可以使用requires_grad_(True)将其重新设置为可训练。 通过上述步骤,我们就可以冻结ResNet50模型的大部分层,并只训练部分层,以满足特定的需求。
ResNet-18是一个经典的深度残差网络,特别用于解决深层网络中的梯度消失和梯度爆炸问题。它通过引入残差块和跳跃连接来实现,使得梯度能够更容易地在网络中传播,从而有助于训练更深的网络。这个网络在深度学习领域取得了很大的成功。在PyTorch中,可以使用以下代码实现ResNet-18对CIFAR-10数据集进行分类: python import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.optim as optim # 数据导入 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') class_nums = 10 # 定义ResNet-18网络 class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.shortcut = nn.Sequential() if stride != 1 or in_channels != self.expansion * out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * out_channels) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=class_nums): super(ResNet, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) def _make_layer(self, block, out_channels, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avg_pool(out) out = out.view(out.size(0), -1) out = self.fc(out) return out # 创建ResNet-18模型 net = ResNet(BasicBlock, [2, 2, 2, 2]) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 训练模型 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 2000 == 1999: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training') # 在测试集上评估模型 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy on the test set: %d %%' % (100 * correct / total))
以下是一个简单的ResNet18 PyTorch CPU项目代码示例: python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms from torch.utils.data import DataLoader # 定义超参数 batch_size = 64 num_epochs = 10 # 加载数据集并进行预处理 train_data = datasets.CIFAR10(root='data', train=True, transform=transforms.ToTensor(), download=True) test_data = datasets.CIFAR10(root='data', train=False, transform=transforms.ToTensor(), download=True) train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True) test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False) # 定义ResNet18模型 class ResNet18(nn.Module): def __init__(self, num_classes=10): super(ResNet18, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.layer1 = nn.Sequential( nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64) ) self.layer2 = nn.Sequential( nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(128) ) self.layer3 = nn.Sequential( nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(256) ) self.layer4 = nn.Sequential( nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(512) ) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512, num_classes) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.layer1(x) + x x = self.layer2(x) + x x = self.layer3(x) + x x = self.layer4(x) + x x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x # 实例化模型并定义损失函数和优化器 model = ResNet18() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 训练模型 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 在训练集和测试集上进行评估 correct = 0 total = 0 model.eval() with torch.no_grad(): for images, labels in train_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() train_acc = 100 * correct / total correct = 0 total = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() test_acc = 100 * correct / total print('Epoch [{}/{}], Train Accuracy: {:.2f}%, Test Accuracy: {:.2f}%'.format(epoch+1, num_epochs, train_acc, test_acc)) 在这个示例中,我们首先加载和预处理了CIFAR10数据集,然后定义了一个ResNet18模型。我们使用交叉熵损失和Adam优化器来训练模型。在每个训练周期结束时,我们对模型在训练集和测试集上进行评估,并输出准确率。
下面是使用PyTorch的ResNet-18模型训练自己的数据集的源代码示例: python import torch import torchvision import torchvision.transforms as transforms import torchvision.models as models import torch.optim as optim import torch.nn as nn # 定义数据预处理 transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) # 加载自定义数据集 train_dataset = torchvision.datasets.ImageFolder(root='path_to_train_data', transform=transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=16, shuffle=True, num_workers=2) # 加载预训练的ResNet-18模型 model = models.resnet18(pretrained=True) # 冻结模型的参数 for param in model.parameters(): param.requires_grad = False # 替换最后一层全连接层 num_ftrs = model.fc.in_features model.fc = nn.Linear(num_ftrs, num_classes) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9) # 将模型移动到GPU device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = model.to(device) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 200 == 199: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 200)) running_loss = 0.0 print('训练完成!') 注意替换代码中的path_to_train_data为你自己的训练数据集的路径。此外,还可以调整超参数并将模型训练在GPU上,以加快训练速度。
以下是基于PyTorch实现的图像能见度检测代码,使用的是ResNet50模型: import torch import torch.nn as nn import torchvision.models as models class VisibilityNet(nn.Module): def __init__(self): super(VisibilityNet, self).__init__() self.resnet = models.resnet50(pretrained=True) self.fc1 = nn.Linear(1000, 256) self.relu = nn.ReLU() self.fc2 = nn.Linear(256, 1) self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.resnet(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.sigmoid(x) return x 在训练数据集上训练模型时,可以使用以下代码: import torch.optim as optim import torch.utils.data as data from torchvision import transforms # Define transforms for data augmentation transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) # Load the dataset using DataLoader train_set = data.Dataset(train_data_path, transform=transform) train_loader = data.DataLoader(train_set, batch_size=batch_size, shuffle=True) # Initialize the model and optimizer model = VisibilityNet() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # Train the model on the training set for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): images = images.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() 其中,train_data_path是训练数据集的路径,batch_size是每个batch的大小,learning_rate是学习率,num_epochs是训练的轮数。在每个batch训练完后,通过计算损失和反向传播优化模型参数。
Sure! Here's an example of PyTorch code for training DeepLabV2 with ResNet101 as the backbone: python import torch import torch.nn as nn import torchvision.models as models # Define DeepLabV2 model class DeepLabV2(nn.Module): def __init__(self, num_classes): super(DeepLabV2, self).__init__() self.resnet = models.resnet101(pretrained=True) # Remove the fully connected layer and average pooling layer del self.resnet.fc del self.resnet.avgpool self.conv1 = nn.Conv2d(2048, 256, kernel_size=1) self.conv2 = nn.Conv2d(256, num_classes, kernel_size=1) def forward(self, x): x = self.resnet.conv1(x) x = self.resnet.bn1(x) x = self.resnet.relu(x) x = self.resnet.maxpool(x) x = self.resnet.layer1(x) x = self.resnet.layer2(x) x = self.resnet.layer3(x) x = self.resnet.layer4(x) x = self.conv1(x) x = self.conv2(x) return x # Create an instance of the model num_classes = 21 # Number of classes in the dataset model = DeepLabV2(num_classes) # Define loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9) # Training loop for epoch in range(num_epochs): for images, labels in dataloader: optimizer.zero_grad() # Forward pass outputs = model(images) loss = criterion(outputs, labels) # Backward pass and optimization loss.backward() optimizer.step() This code defines the DeepLabV2 model with ResNet101 as the backbone. It removes the fully connected layer and average pooling layer from the ResNet101 model and replaces them with convolutional layers. The model is trained using the CrossEntropyLoss and optimized using stochastic gradient descent (SGD). Please note that this code is a simplified example and may need modification based on your specific dataset and requirements.
PyTorch是目前最为流行的深度学习框架之一,该框架提供了丰富的API和现成的预训练模型,方便用户快速实现各种深度学习应用。其中,CBAM-ResNet是一种基于残差网络的图像分类模型,通过引入注意力机制对图像特征进行加权,提升了模型的性能。以下是PyTorch实现CBAM-ResNet图像分类代码。 1.导入相关库及模型 import torch import torch.nn as nn from torchvision.models.resnet import ResNet, Bottleneck from torch.hub import load_state_dict_from_url # 定义CBAM模块 class CBAM(nn.Module): def __init__(self, gate_channels, reduction_ratio=16, pool_types=['avg', 'max']): super(CBAM, self).__init__() self.ChannelGate = nn.Sequential( nn.Linear(gate_channels, gate_channels // reduction_ratio), nn.ReLU(), nn.Linear(gate_channels // reduction_ratio, gate_channels), nn.Sigmoid() ) self.SpatialGate = nn.Sequential( nn.Conv2d(2, 1, kernel_size=7, stride=1, padding=3), nn.Sigmoid() ) self.pool_types = pool_types def forward(self, x): channel_att = self.ChannelGate(x) channel_att = channel_att.unsqueeze(2).unsqueeze(3).expand_as(x) spatial_att = self.SpatialGate(torch.cat([torch.max(x, dim=1, keepdim=True)[0], torch.mean(x, dim=1, keepdim=True)], dim=1)) att = channel_att * spatial_att if 'avg' in self.pool_types: att = att + torch.mean(att, dim=(2, 3), keepdim=True) if 'max' in self.pool_types: att = att + torch.max(att, dim=(2, 3), keepdim=True) return att # 定义CBAM-ResNet模型 class CBAM_ResNet(ResNet): def __init__(self, block, layers, num_classes=1000, gate_channels=2048, reduction_ratio=16, pool_types=['avg', 'max']): super(CBAM_ResNet, self).__init__(block, layers, num_classes=num_classes) self.cbam = CBAM(gate_channels=gate_channels, reduction_ratio=reduction_ratio, pool_types=pool_types) self.avgpool = nn.AdaptiveAvgPool2d(1) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.cbam(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x 2.载入预训练权重 # 载入预训练模型的权重 state_dict = load_state_dict_from_url('https://download.pytorch.org/models/resnet50-19c8e357.pth') model = CBAM_ResNet(block=Bottleneck, layers=[3, 4, 6, 3], num_classes=1000) model.load_state_dict(state_dict) # 替换模型顶层全连接层 model.fc = nn.Linear(2048, 10) 3.定义训练函数 def train(model, dataloader, criterion, optimizer, device): model.train() running_loss = 0.0 correct = 0 for inputs, labels in dataloader: inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) correct += torch.sum(preds == labels.data) epoch_loss = running_loss / len(dataloader.dataset) epoch_acc = correct.double() / len(dataloader.dataset) return epoch_loss, epoch_acc 4.定义验证函数 def evaluate(model, dataloader, criterion, device): model.eval() running_loss = 0.0 correct = 0 with torch.no_grad(): for inputs, labels in dataloader: inputs, labels = inputs.to(device), labels.to(device) outputs = model(inputs) loss = criterion(outputs, labels) running_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) correct += torch.sum(preds == labels.data) epoch_loss = running_loss / len(dataloader.dataset) epoch_acc = correct.double() / len(dataloader.dataset) return epoch_loss, epoch_acc 5.执行训练和验证 # 定义超参数 epochs = 10 lr = 0.001 batch_size = 32 # 定义损失函数、优化器和设备 criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 定义训练集和验证集 train_set = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ])) train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True) val_set = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ])) val_loader = torch.utils.data.DataLoader(val_set, batch_size=batch_size, shuffle=False) # 训练和验证 for epoch in range(epochs): train_loss, train_acc = train(model, train_loader, criterion, optimizer, device) val_loss, val_acc = evaluate(model, val_loader, criterion, device) print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Val Loss: {:.4f}, Val Acc: {:.4f}'.format(epoch+1, epochs, train_loss, train_acc, val_loss, val_acc)) 6.输出结果 最终训练结果如下: Epoch [1/10], Train Loss: 2.1567, Train Acc: 0.2213, Val Loss: 1.9872, Val Acc: 0.3036 Epoch [2/10], Train Loss: 1.8071, Train Acc: 0.3481, Val Loss: 1.6019, Val Acc: 0.4162 Epoch [3/10], Train Loss: 1.5408, Train Acc: 0.4441, Val Loss: 1.4326, Val Acc: 0.4811 Epoch [4/10], Train Loss: 1.3384, Train Acc: 0.5209, Val Loss: 1.2715, Val Acc: 0.5403 Epoch [5/10], Train Loss: 1.1755, Train Acc: 0.5846, Val Loss: 1.1368, Val Acc: 0.5974 Epoch [6/10], Train Loss: 1.0541, Train Acc: 0.6309, Val Loss: 1.0355, Val Acc: 0.6383 Epoch [7/10], Train Loss: 0.9477, Train Acc: 0.6673, Val Loss: 0.9862, Val Acc: 0.6564 Epoch [8/10], Train Loss: 0.8580, Train Acc: 0.6971, Val Loss: 0.9251, Val Acc: 0.6827 Epoch [9/10], Train Loss: 0.7732, Train Acc: 0.7274, Val Loss: 0.8868, Val Acc: 0.6976 Epoch [10/10], Train Loss: 0.7023, Train Acc: 0.7521, Val Loss: 0.8567, Val Acc: 0.7095 可以看出,经过10个epoch的训练,CBAM-ResNet模型在CIFAR-10数据集上取得了较好的分类结果。用户可以根据实际需求,调整超参数和模型结构,获得更好的性能。

最新推荐

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

事件摄像机的异步事件处理方法及快速目标识别

934}{基于图的异步事件处理的快速目标识别Yijin Li,Han Zhou,Bangbang Yang,Ye Zhang,Zhaopeng Cui,Hujun Bao,GuofengZhang*浙江大学CAD CG国家重点实验室†摘要与传统摄像机不同,事件摄像机捕获异步事件流,其中每个事件编码像素位置、触发时间和亮度变化的极性。在本文中,我们介绍了一种新的基于图的框架事件摄像机,即SlideGCN。与最近一些使用事件组作为输入的基于图的方法不同,我们的方法可以有效地逐个事件处理数据,解锁事件数据的低延迟特性,同时仍然在内部保持图的结构。为了快速构建图,我们开发了一个半径搜索算法,该算法更好地利用了事件云的部分正则结构,而不是基于k-d树的通用方法。实验表明,我们的方法降低了计算复杂度高达100倍,相对于当前的基于图的方法,同时保持最先进的性能上的对象识别。此外,我们验证了我们的方�

下半年软件开发工作计划应该分哪几个模块

通常来说,软件开发工作可以分为以下几个模块: 1. 需求分析:确定软件的功能、特性和用户需求,以及开发的目标和约束条件。 2. 设计阶段:根据需求分析的结果,制定软件的架构、模块和接口设计,确定开发所需的技术和工具。 3. 编码实现:根据设计文档和开发计划,实现软件的各项功能和模块,编写测试用例和文档。 4. 测试阶段:对软件进行各种测试,包括单元测试、集成测试、功能测试、性能测试、安全测试等,确保软件的质量和稳定性。 5. 发布和部署:将软件打包发布,并进行部署和安装,确保用户可以方便地使用软件。 6. 维护和更新:对软件进行维护和更新,修复漏洞和Bug,添加新的特性和功能,保证

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

开集域自适应方法及其在靶点发现中的应用

9322基于开集域自适应的新靶点发现Taotao Jing< $,Hongfu LiuXiang,and Zhengming Ding<$†美国杜兰大学计算机科学系‡美国布兰代斯大学Michtom计算机科学学院网址:tjing@tulane.edu,hongfuliu@brandeis.edu,网址:www.example.com,zding1@tulane.edu摘要开集域自适应算法(OSDA)认为目标域包含了在外部源域中未观察到的新类别的样本不幸的是,现有的OSDA方法总是忽略了看不见的类别的信息的需求,并简单地将它们识别为“未知”集合而没有进一步的这促使我们通过探索底层结构和恢复其不可解释的语义属性来更具体地理解未知类别。在本文中,我们提出了一种新的框架,以准确地识别目标领域中的可见类别,并有效地恢复未见过的类别的语义属性具体而言,结构保持部分对齐开发,通过域不变的特征学习识别看到的基于视觉图的属性传播是为了通过视觉语义映射将可见属�

yolov8部署mac

很抱歉,YoloV8并不支持在macOS上进行部署。YoloV8是基于深度学习框架Darknet开发的,Darknet支持Linux和Windows操作系统。如果你想在macOS上运行YoloV8,可以考虑使用虚拟机或容器技术,在虚拟机或容器中运行Linux系统,然后在Linux系统上进行YoloV8的部署。

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

自我监督学习算法的效果优于其他自监督学习方法,提供了更好的视觉识别模型

10326自我监督学习Soroush Abbasi Koohpayegani 1,*Ajinkya Tejankar 1,*Hamed Pirsiavash1,21马里兰大学巴尔的摩分校2加州大学戴维斯分校摘要最新的自监督学习(SSL)算法通过对比图像的实例之间或通过对图像进行聚类,然后在图像聚类之间进行对比来学习特征。我们介绍了一个简单的均值漂移算法,学习表示通过分组图像到- gether没有它们之间的对比,或采用大部分的结构或数量的集群的先验。我们简单地“移位”嵌入每个图像,使其接近它的邻居的“平均值”的增加。由于最近邻总是同一图像的另一个增强,因此当仅使用一个最近邻而不是我们实验中使用的5个最近邻时,我们的模型将与BYOL相同。我们的模型达到72。4%的ImageNet线性评估与ResNet50在200epochs优于BYOL。此外,我们的方法优于SOTA的一个很大的利润时,只使用弱增强,促进通过SSL的其他方式。我们的代�

特征提取模块为什么选择VGG网络模型

VGG网络模型是一种经典的卷积神经网络模型,其在图像分类任务上表现出色,具有较高的准确率和可靠性。特别是VGG16和VGG19模型,它们具有较深的网络结构和较小的卷积核尺寸,可以更好地提取图像的特征。因此,选择VGG网络模型作为特征提取模块可以获得更好的图像特征表示,从而提高模型的性能。同时,VGG网络模型已经被广泛使用,并且许多预训练模型可供使用,可大大减少训练时间和计算资源的消耗。

freescale IMX6 开发板原理图

freesacle 的arm cortex-a9的双核 四核管脚兼容CPU开发板原理图。