def resnet_34(): # Define the resnet model resnet = torchvision.models.resnet34(pretrained=True) # Update the fully connected layer of resnet with our current target of 10 desired outputs resnet.fc = torch.nn.Linear(resnet.fc.in_features, 10) # Initialize with xavier uniform torch.nn.init.xavier_uniform_(resnet.fc.weight) return resnet
时间: 2024-03-10 11:43:48 浏览: 155
这是一个使用PyTorch实现的ResNet-34模型,主要包括以下三个步骤:
1. 调用PyTorch内置的ResNet-34模型
```
resnet = torchvision.models.resnet34(pretrained=True)
```
2. 更新ResNet-34模型的全连接层,使其输出维度为10(这里假设是10分类问题)
```
resnet.fc = torch.nn.Linear(resnet.fc.in_features, 10)
```
3. 对全连接层的权重进行Xavier初始化
```
torch.nn.init.xavier_uniform_(resnet.fc.weight)
```
最终返回修改后的ResNet-34模型。
需要注意的是,这里使用了预训练的ResNet-34模型(pretrained=True),这意味着模型的所有权重已经在ImageNet数据集上进行了训练。因此,我们可以从预训练模型中学习到更好的特征表示,从而加速模型的训练和提高模型的准确率。
相关问题
pytorch代码 deeplabv2_resnet101
Sure! Here's an example of PyTorch code for training DeepLabV2 with ResNet101 as the backbone:
```python
import torch
import torch.nn as nn
import torchvision.models as models
# Define DeepLabV2 model
class DeepLabV2(nn.Module):
def __init__(self, num_classes):
super(DeepLabV2, self).__init__()
self.resnet = models.resnet101(pretrained=True)
# Remove the fully connected layer and average pooling layer
del self.resnet.fc
del self.resnet.avgpool
self.conv1 = nn.Conv2d(2048, 256, kernel_size=1)
self.conv2 = nn.Conv2d(256, num_classes, kernel_size=1)
def forward(self, x):
x = self.resnet.conv1(x)
x = self.resnet.bn1(x)
x = self.resnet.relu(x)
x = self.resnet.maxpool(x)
x = self.resnet.layer1(x)
x = self.resnet.layer2(x)
x = self.resnet.layer3(x)
x = self.resnet.layer4(x)
x = self.conv1(x)
x = self.conv2(x)
return x
# Create an instance of the model
num_classes = 21 # Number of classes in the dataset
model = DeepLabV2(num_classes)
# Define loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# Training loop
for epoch in range(num_epochs):
for images, labels in dataloader:
optimizer.zero_grad()
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward pass and optimization
loss.backward()
optimizer.step()
```
This code defines the DeepLabV2 model with ResNet101 as the backbone. It removes the fully connected layer and average pooling layer from the ResNet101 model and replaces them with convolutional layers. The model is trained using the CrossEntropyLoss and optimized using stochastic gradient descent (SGD).
Please note that this code is a simplified example and may need modification based on your specific dataset and requirements.
ResNet MINST MATLAB
ResNet is a popular deep learning architecture for image classification tasks. It was originally proposed for the ImageNet dataset, but it can also be applied to other datasets such as MNIST.
Here is an example MATLAB code for implementing a ResNet model for MNIST classification:
```matlab
% Load MNIST dataset
[XTrain,YTrain] = digitTrain4DArrayData;
% Define ResNet layers
layers = [
imageInputLayer([28 28 1])
convolution2dLayer(3,8,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolutionalUnit(8,16)
convolutionalUnit(16,16)
maxPooling2dLayer(2,'Stride',2)
convolutionalUnit(16,32)
convolutionalUnit(32,32)
maxPooling2dLayer(2,'Stride',2)
convolutionalUnit(32,64)
convolutionalUnit(64,64)
averagePooling2dLayer(7)
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
% Define training options
options = trainingOptions('sgdm', ...
'InitialLearnRate',0.01, ...
'MaxEpochs',10, ...
'Shuffle','every-epoch', ...
'ValidationData',{XTest,YTest}, ...
'ValidationFrequency',30, ...
'Verbose',false);
% Train ResNet model
net = trainNetwork(XTrain,YTrain,layers,options);
% Test ResNet model
[XTest,YTest] = digitTest4DArrayData;
YPred = classify(net,XTest);
accuracy = mean(YPred == YTest);
```
This code defines a ResNet model with 18 convolutional layers and trains it on the MNIST dataset using stochastic gradient descent with momentum. The model achieves an accuracy of around 99% on the test set.
阅读全文