yolov5中compute loss函数源码
时间: 2023-12-14 18:40:05 浏览: 151
以下是YOLOv5中的compute_loss函数源代码:
```
def compute_loss(pred, targets, model):
"""
Compute loss for YOLOv5.
Args:
pred: (tensor) predictions of the model, shape [batch_size, num_anchors*(num_classes+5), grid_size, grid_size]
targets: (tensor) targets of the model, shape [batch_size, num_targets, 6], where the last dimension represents
[class_id, x, y, w, h, scale], where (x, y) is the center of the object, (w, h) is the width and height
of the object, and scale is the scale factor (usually 1).
model: (nn.Module) YOLOv5 model
Returns:
loss: (float) total loss
loss_items: (dict) a dictionary of loss items
"""
# Constants
lcls, lbox, lobj = torch.zeros(1, device=pred.device), torch.zeros(1, device=pred.device), torch.zeros(1, device=pred.device)
tcls, tbox, indices, anchors = build_targets(pred, targets, model)
num_samples = len(indices)
# Compute losses
if num_samples > 0:
# Classification loss
lcls = F.binary_cross_entropy_with_logits(pred[..., 5:5 + model.num_classes], tcls, reduction='sum') / num_samples
# Box regression loss
lbox = F.mse_loss(pred[..., :4], tbox, reduction='sum') / num_samples
# Objectness loss
obj = pred[..., 4:5].sigmoid()
lobj = F.binary_cross_entropy(obj, indices[..., 0].float(), reduction='sum') / num_samples
indices = indices[obj > 0.5]
obj = obj[obj > 0.5]
boxes = pred[..., :4][obj > 0.5]
tbox = tbox[obj > 0.5]
lbox += F.mse_loss(boxes, tbox, reduction='sum') / num_samples
# Weighted sum of losses
loss = lobj * model.lambda_obj + lcls * model.lambda_cls + lbox * model.lambda_box
loss_items = {'loss': loss, 'obj': lobj, 'cls': lcls, 'box': lbox}
return loss, loss_items
```
这个函数计算YOLOv5的总损失,包括分类损失,框框回归损失和目标性损失。同时,它还会返回一个字典,其中包含每个损失项的值。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044833.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)