基于arm写出c语言代码,代码可以实现使用红外感应,红外感应接受到信号时蜂鸣器急促响应,没有信号时蜂鸣器定时循环响应,数码管记录红外感应信号感应次数 写出这个c语言代码

时间: 2024-03-10 07:51:12 浏览: 25
以下是基于ARM的C语言代码,实现了红外感应、蜂鸣器响应和数码管记录感应次数的功能: ``` #include "stdio.h" #include "stm32f10x.h" #include "stm32f10x_gpio.h" #include "stm32f10x_rcc.h" #include "stm32f10x_tim.h" int cnt = 0; // 红外感应信号感应次数 void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB, ENABLE); // 设置红外感应输入引脚 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; GPIO_Init(GPIOA, &GPIO_InitStructure); // 设置蜂鸣器输出引脚 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); // 设置数码管输出引脚 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure); } void TIM_Configuration(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); TIM_TimeBaseStructure.TIM_Period = 999; // 定时器周期为1ms TIM_TimeBaseStructure.TIM_Prescaler = 71; // 定时器时钟频率为72MHz/72=1MHz TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); TIM_Cmd(TIM2, ENABLE); } void TIM2_IRQHandler(void) { if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET) { TIM_ClearITPendingBit(TIM2, TIM_IT_Update); if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_0) == 1) // 红外感应接受到信号时 { GPIO_SetBits(GPIOA, GPIO_Pin_1); // 蜂鸣器急促响应 cnt++; // 红外感应信号感应次数加1 delay_ms(100); // 延时100ms GPIO_ResetBits(GPIOA, GPIO_Pin_1); // 蜂鸣器停止响应 } else // 没有信号时 { GPIO_SetBits(GPIOA, GPIO_Pin_1); // 蜂鸣器定时循环响应 delay_ms(50); // 延时50ms GPIO_ResetBits(GPIOA, GPIO_Pin_1); } } } void display(int n) { int digit[8] = {0}; // 数字转化为二进制后的每一位 for (int i = 0; i < 8; i++) { digit[i] = n % 2; n /= 2; } GPIO_SetBits(GPIOB, GPIO_Pin_0); // 选择数码管1 GPIO_ResetBits(GPIOB, GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7); GPIO_WriteBit(GPIOB, GPIO_Pin_7, digit[0]); GPIO_SetBits(GPIOB, GPIO_Pin_1); // 选择数码管2 GPIO_ResetBits(GPIOB, GPIO_Pin_0 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7); GPIO_WriteBit(GPIOB, GPIO_Pin_7, digit[1]); GPIO_SetBits(GPIOB, GPIO_Pin_2); // 选择数码管3 GPIO_ResetBits(GPIOB, GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7); GPIO_WriteBit(GPIOB, GPIO_Pin_7, digit[2]); GPIO_SetBits(GPIOB, GPIO_Pin_3); // 选择数码管4 GPIO_ResetBits(GPIOB, GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7); GPIO_WriteBit(GPIOB, GPIO_Pin_7, digit[3]); GPIO_SetBits(GPIOB, GPIO_Pin_4); // 选择数码管5 GPIO_ResetBits(GPIOB, GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7); GPIO_WriteBit(GPIOB, GPIO_Pin_7, digit[4]); GPIO_SetBits(GPIOB, GPIO_Pin_5); // 选择数码管6 GPIO_ResetBits(GPIOB, GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_6 | GPIO_Pin_7); GPIO_WriteBit(GPIOB, GPIO_Pin_7, digit[5]); GPIO_SetBits(GPIOB, GPIO_Pin_6); // 选择数码管7 GPIO_ResetBits(GPIOB, GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_7); GPIO_WriteBit(GPIOB, GPIO_Pin_7, digit[6]); GPIO_SetBits(GPIOB, GPIO_Pin_7); // 选择数码管8 GPIO_ResetBits(GPIOB, GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6); GPIO_WriteBit(GPIOB, GPIO_Pin_7, digit[7]); } void delay_ms(int ms) { TIM_SetCounter(TIM2, 0); while (TIM_GetCounter(TIM2) < ms); } int main(void) { GPIO_Configuration(); TIM_Configuration(); while (1) { display(cnt); // 数码管记录红外感应信号感应次数 } } ``` 该代码使用了定时器和中断的方式,能够实现同时检测红外感应信号和定时循环响应蜂鸣器。数码管的显示使用了二进制转换的方式,能够记录红外感应信号感应次数。

相关推荐

最新推荐

recommend-type

红外接收、发射模块代码

红外接收、发射模块代码详解 红外接收、发射模块是单片机系统中常用的通信模块,它们可以实现...红外接收、发射模块代码的实现是红外通信系统中的重要组件,它们可以实现红外信号的发送和接收,并且有很多实际应用。
recommend-type

嵌入式系统/ARM技术中的基于Linux的嵌入式红外热成像系统设计

 本系统通过红外焦平面阵列探测器将红外图像送入红外图像采集模块并完成模数转化,转化后的数字信号送入图像校正模块进行非均匀校正、测温和滤波处理,校正后的图像数据再送入图像显示终端,图像显示终端将图像信息...
recommend-type

Pycharm编辑器功能之代码折叠效果的实现代码

 在一些情况下,如果某些代码显得不太重要,我们可以通过Pycharm的代码折叠功能将其折叠为一行。在接下来的部分我们将介绍代码折叠功能基本用法。  2、代码可折叠轮廓线以及折叠开关  首先,我们观察一下代码左侧...
recommend-type

嵌入式系统/ARM技术中的关于博控 SYS TEC CANopen 协议栈源代码

 详细介绍: CANopen 源代码选型指南 按源代码产品名称 按应用或设备类型 按 CANopen 设备和应用规范 源代码特点比较 特点 * 支持多实例-可以在一个物理设备上实现多个CANopen逻辑设备 * 一年免费的软件维护和技术...
recommend-type

工业电子中的基于ARM和FPGA的多路电机控制方案

介绍了一种基于fpga的多轴控制器,控制器主要由arm7(LPC2214)和fpga...实际使用表明该控制器可以很好控制多轴电机的运动,并且能够实现高精度地位置控制。  随着电机广泛地应用于数字控制系统中,对电机控制的实
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。