import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten # 加载数据 data = pd.read_csv('3c_left_1-6.csv') # 将数据转换为三维时序信号 x = data.iloc[:, 0:3].values x = x.reshape(x.shape[0], x.shape[1], 1) # 添加噪声 noise = np.random.normal(0, 1, x.shape) x_noise = x + noise # 构建模型 model = Sequential() model.add(Conv1D(32, kernel_size=3, activation='relu', input_shape=(3, 1))) model.add(Conv1D(64, kernel_size=3, activation='relu')) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(3)) # 编译模型 model.compile(loss='mse', optimizer='adam') # 训练模型 model.fit(x_noise, x, epochs=50, batch_size=32) # 预测结果 x_pred = model.predict(x_noise) # 计算SNR、MSE、PSNR snr = 10 * np.log10(np.sum(x ** 2) / np.sum((x - x_pred) ** 2)) mse = np.mean((x - x_pred) ** 2) psnr = 10 * np.log10((np.max(x) ** 2) / mse) # 保存结果 result = pd.DataFrame({'SNR': [snr], 'MSE': [mse], 'PSNR': [psnr]}) result.to_csv('result.csv', index=False)报错 File "G:\project2\gaussian.py", line 20, in <module> model.add(Conv1D(64, kernel_size=3, activation='relu'))ValueError: Negative dimension size caused by subtracting 3 from 1 for 'conv1d_2/convolution' (op: 'Conv2D') with input shapes: [?,1,1,32], [1,3,32,64].
时间: 2023-06-15 08:05:09 浏览: 173
这个错误是由于输入的数据维度不符合Conv1D层的要求导致的。具体来说,Conv1D层期望的输入数据维度是(batch_size,time_steps,input_dim),其中batch_size表示每批次训练的数据量,time_steps表示时间步数,input_dim表示每个时间步的特征维度。而在你的代码中,由于数据的维度不正确,导致Conv1D层的第二个卷积核的输入维度不正确,因此出现了负维度错误。
检查一下你的输入数据的维度是否正确,特别是time_steps这个维度是否正确。如果还存在问题,可以尝试调整Conv1D层的参数,例如kernel_size、stride等,以适应输入数据的维度。
相关问题
import numpy as np import tensorflow as tf from keras.models import Sequential from keras.layers import Dense, Activation, Dropout, Flatten from keras.layers.convolutional import Conv2D, MaxPooling2D from keras.utils import np_utils from keras.datasets import mnist from keras import backend as K from keras.optimizers import Adam import skfuzzy as fuzz import pandas as pd from sklearn.model_selection import train_test_split # 绘制损失曲线 import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score data = pd.read_excel(r"D:\pythonProject60\filtered_data1.xlsx") # 读取数据文件 # Split data into input and output variables X = data.iloc[:, :-1].values y = data.iloc[:, -1].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 导入MNIST数据集 # 数据预处理 y_train = np_utils.to_categorical(y_train, 3) y_test = np_utils.to_categorical(y_test, 3) # 创建DNFN模型 model = Sequential() model.add(Dense(64, input_shape=(11,), activation='relu')) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(3, activation='softmax')) # 编译模型 model.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=['accuracy']) # 训练模型 history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=128) # 使用DNFN模型进行预测 y_pred = model.predict(X_test) y_pred= np.argmax(y_pred, axis=1) print(y_pred) # 计算模糊分类 fuzzy_pred = [] for i in range(len(y_pred)): fuzzy_class = np.zeros((3,)) fuzzy_class[y_pred[i]] = 1.0 fuzzy_pred.append(fuzzy_class) fuzzy_pred = np.array(fuzzy_pred) print(fuzzy_pred)获得其运行时间
抱歉,我无法获得该代码的运行时间,因为您没有在代码中包含计时器或时间测量的代码。您可以使用Python的time模块来计算代码的运行时间。例如,您可以在代码的开始和结束位置添加以下代码:
```
import time
start_time = time.time()
# Your code here
end_time = time.time()
print("Total time taken: ", end_time - start_time, "seconds")
```
这将打印代码的总运行时间,以秒为单位。
import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten # 加载数据 data = pd.read_csv('3c_left_1-6.csv') # 将数据转换为三维时序信号 x = data.iloc[:, 0:3].values x = x.reshape(x.shape[0], x.shape[1], 1) # 添加噪声 noise = np.random.normal(0, 1, x.shape) x_noise = x + noise # 构建模型 model = Sequential() model.add(Conv1D(32, kernel_size=3, activation='relu', input_shape=(3, 1))) model.add(MaxPooling1D(pool_size=2)) model.add(Conv1D(64, kernel_size=3, activation='relu')) model.add(MaxPooling1D(pool_size=2)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(3)) # 编译模型 model.compile(loss='mse', optimizer='adam') # 训练模型 model.fit(x_noise, x, epochs=50, batch_size=32) # 预测结果 x_pred = model.predict(x_noise) # 计算SNR、MSE、PSNR snr = 10 * np.log10(np.sum(x ** 2) / np.sum((x - x_pred) ** 2)) mse = np.mean((x - x_pred) ** 2) psnr = 10 * np.log10((np.max(x) ** 2) / mse) # 保存结果 result = pd.DataFrame({'SNR': [snr], 'MSE': [mse], 'PSNR': [psnr]}) result.to_csv('result.csv', index=False) 报错为File "G:\project2\gaussian.py", line 20, in <module> model.add(MaxPooling1D(pool_size=2))ValueError: Negative dimension size caused by subtracting 2 from 1 for 'max_pooling1d_1/MaxPool' (op: 'MaxPool') with input shapes: [?,1,1,32].
这个错误是因为在添加第一个池化层后,输出张量的空间维度被缩小到了1,而在添加第二个池化层时,池化窗口大小为2,会导致输出张量的空间维度变成负数。解决方法是将第一个池化层的池化窗口大小改为1或者不使用池化层。修改代码如下:
```
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten
# 加载数据
data = pd.read_csv('3c_left_1-6.csv')
# 将数据转换为三维时序信号
x = data.iloc[:, 0:3].values
x = x.reshape(x.shape[0], x.shape[1], 1)
# 添加噪声
noise = np.random.normal(0, 1, x.shape)
x_noise = x + noise
# 构建模型
model = Sequential()
model.add(Conv1D(32, kernel_size=3, activation='relu', input_shape=(3, 1)))
model.add(Conv1D(64, kernel_size=3, activation='relu'))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(3))
# 编译模型
model.compile(loss='mse', optimizer='adam')
# 训练模型
model.fit(x_noise, x, epochs=50, batch_size=32)
# 预测结果
x_pred = model.predict(x_noise)
# 计算SNR、MSE、PSNR
snr = 10 * np.log10(np.sum(x ** 2) / np.sum((x - x_pred) ** 2))
mse = np.mean((x - x_pred) ** 2)
psnr = 10 * np.log10((np.max(x) ** 2) / mse)
# 保存结果
result = pd.DataFrame({'SNR': [snr], 'MSE': [mse], 'PSNR': [psnr]})
result.to_csv('result.csv', index=False)
```
阅读全文