我在pycharm中使用了from utils.dataloader import get_loader, test_dataset from utils.utils import AvgMeter,怎么查看使用在哪里
时间: 2024-03-04 17:54:15 浏览: 77
在PyCharm中,可以使用“Find Usages”功能来查找你在代码中使用的模块、函数、变量等等。具体步骤如下:
1. 打开PyCharm,进入你的项目。
2. 在项目文件夹中,找到使用了你所导入的模块的代码文件(例如:main.py)。
3. 在该文件中,选中你导入的模块名或函数名或变量名(例如:get_loader),右键点击,选择“Find Usages”。
4. 在弹出的窗口中,可以看到该模块、函数、变量在代码中的所有使用情况,包括导入该模块的代码行数、函数中调用该函数的行数、变量的赋值行数等等。
5. 点击每个使用情况,可以跳转到对应的代码位置,方便查看和修改。
同样地,你可以按照以上步骤查找你在代码中使用的其他模块、函数、变量等等。希望这个答案对你有所帮助!
相关问题
修改一下这段代码在pycharm中的实现,import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim #from torchvision import datasets,transforms import torch.utils.data as data #from torch .nn:utils import weight_norm import matplotlib.pyplot as plt from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score data_ = pd.read_csv(open(r"C:\Users\zhangjinyue\Desktop\rice.csv"),header=None) data_ = np.array(data_).astype('float64') train_data =data_[:,:520] train_Data =np.array(train_data).astype('float64') train_labels=data_[:,520] train_labels=np.array(train_data).astype('float64') train_data,train_data,train_labels,train_labels=train_test_split(train_data,train_labels,test_size=0.33333) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) start_epoch=1 num_epoch=1 BATCH_SIZE=70 Ir=0.001 classes=('0','1','2','3','4','5') device=torch.device("cuda"if torch.cuda.is_available()else"cpu") torch.backends.cudnn.benchmark=True best_acc=0.0 train_dataset=data.TensorDataset(train_data,train_labels) test_dataset=data.TensorDataset(train_data,train_labels) train_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True) test_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)
修改后的代码如下所示:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data
import matplotlib.pyplot as plt
from sklearn.metrics import precision_score, recall_score, f1_score, cohen_kappa_score
data_ = pd.read_csv(r"C:\Users\zhangjinyue\Desktop\rice.csv", header=None)
data_ = np.array(data_).astype('float64')
train_data = data_[:, :520]
train_labels = data_[:, 520]
train_data, _, train_labels, _ = train_test_split(train_data, train_labels, test_size=0.33333)
train_data = torch.Tensor(train_data)
train_labels = torch.LongTensor(train_labels)
train_data = train_data.reshape(-1, 1, 20, 26)
start_epoch = 1
num_epoch = 1
BATCH_SIZE = 70
Ir = 0.001
classes = ('0', '1', '2', '3', '4', '5')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.backends.cudnn.benchmark = True
best_acc = 0.0
train_dataset = data.TensorDataset(train_data, train_labels)
test_dataset = data.TensorDataset(train_data, train_labels)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
```
请注意,我做了以下修改:
1. 移除了不需要的导入语句。
2. 修复了变量名拼写错误。
3. 移除了重复的代码行。
4. 修正了 `torch.utils.data.DataLoader` 的拼写错误。
5. 修正了数据集分割时的变量名错误。
请根据你的实际需求进一步调整代码。
Python界面中以下代码如何显示:1. 下载数据 tr_path = 'covid.train.csv' # path to training data tt_path = 'covid.test.csv' # path to testing data 2. 导入一些包 # PyTorch import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader # For data preproce
在Python界面中显示这些代码,你可以将其复制粘贴到Python IDE中,例如PyCharm或Jupyter Notebook中,然后按下Enter键进行执行。如果你想在Python交互式解释器中执行这些代码,可以逐行复制并粘贴代码,然后按下Enter键来执行每一行代码。在执行之前,请确保你已经正确安装了相关的库和依赖项。
阅读全文