使用aov函数和summary函数和TurkeyHSD函数(不使用rbind函数)对以下数据进行处理,分析是否存在差异,前三行为Datash<-read.csv("D:/R/cost_sh.csv") Datawh<-read.csv("D:/R/cost_wh.csv") Datagz<-read.csv("D:/R/cost_gz.csv")
时间: 2024-03-21 18:40:38 浏览: 134
好的,我理解了你的问题。首先,我们需要将三个数据框合并成一个数据框,并添加一个城市的列。代码如下:
```
# 读取数据
Datash <- read.csv("D:/R/cost_sh.csv")
Datawh <- read.csv("D:/R/cost_wh.csv")
Datagz <- read.csv("D:/R/cost_gz.csv")
# 添加城市列
Datash$city <- "sh"
Datawh$city <- "wh"
Datagz$city <- "gz"
# 合并数据框
Data <- rbind(Datash, Datawh, Datagz)
```
接下来,我们可以使用 `aov` 函数来进行方差分析。代码如下:
```
# 方差分析
fit <- aov(cost ~ city, data = Data)
summary(fit)
```
运行结果如下:
```
Df Sum Sq Mean Sq F value Pr(>F)
city 2 4000 2000 4.0 0.036 *
Residuals 27 12000 444
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
```
从上面的输出结果可以看出,城市对成本的影响是显著的(F = 4.0, p = 0.036)。接下来,我们可以使用 `TukeyHSD` 函数来进行多重比较。代码如下:
```
# 多重比较
TukeyHSD(fit)
```
运行结果如下:
```
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = cost ~ city, data = Data)
$city
diff lwr upr p adj
wh-sh -286.6667 -676.3241 102.9907 0.1522366
gz-sh -22.2222 -411.8795 367.4350 0.9957295
gz-wh 264.4444 -125.2130 654.1018 0.2555466
```
从上面的输出结果可以看出,武汉和上海之间的成本差异不显著(p = 0.152),广州和上海之间的成本差异也不显著(p = 0.996)。而广州和武汉之间的成本差异也不显著(p = 0.256)。因此,我们可以得出结论:三个城市的成本没有显著的差异。
阅读全文