基于convlstm的地铁客流预测模型代码
时间: 2023-11-10 09:06:59 浏览: 100
以下是基于ConvLSTM的地铁客流预测模型的PyTorch代码示例:
```python
import torch
import torch.nn as nn
from torch.autograd import Variable
class ConvLSTMCell(nn.Module):
def __init__(self, input_channels, hidden_channels, kernel_size):
super(ConvLSTMCell, self).__init__()
self.input_channels = input_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.num_features = 4
self.padding = int((kernel_size - 1) / 2)
self.conv = nn.Conv2d(in_channels=self.input_channels + self.hidden_channels,
out_channels=self.num_features * self.hidden_channels,
kernel_size=self.kernel_size,
padding=self.padding)
def forward(self, input, hx):
if hx is None:
hx = (Variable(torch.zeros(input.size(0), self.hidden_channels, input.size(2), input.size(3)).cuda()),
Variable(torch.zeros(input.size(0), self.hidden_channels, input.size(2), input.size(3)).cuda()))
h_cur, c_cur = hx
combined = torch.cat([input, h_cur], dim=1)
gates = self.conv(combined)
i_gate, f_gate, o_gate, g_gate = torch.split(gates, self.hidden_channels, dim=1)
i_gate = torch.sigmoid(i_gate)
f_gate = torch.sigmoid(f_gate)
o_gate = torch.sigmoid(o_gate)
g_gate = torch.tanh(g_gate)
c_next = (f_gate * c_cur) + (i_gate * g_gate)
h_next = o_gate * torch.tanh(c_next)
return h_next, c_next
class ConvLSTM(nn.Module):
def __init__(self, input_channels, hidden_channels, kernel_size, num_layers, batch_first=False):
super(ConvLSTM, self).__init__()
self.input_channels = [input_channels] + hidden_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.num_layers = num_layers
self.batch_first = batch_first
cell_list = []
for i in range(self.num_layers):
cur_input_channels = self.input_channels[i]
cur_hidden_channels = self.hidden_channels[i]
cell_list.append(ConvLSTMCell(input_channels=cur_input_channels,
hidden_channels=cur_hidden_channels,
kernel_size=self.kernel_size))
self.cell_list = nn.ModuleList(cell_list)
def forward(self, input, hidden_state=None):
if hidden_state is None:
hidden_state = [None] * self.num_layers
seq_len = input.size(1) if self.batch_first else input.size(0)
cur_layer_input = input
new_hidden_state = []
for layer_idx in range(self.num_layers):
h, c = hidden_state[layer_idx]
layer_output = []
for t in range(seq_len):
if self.batch_first:
x_t = cur_layer_input[:, t, :, :, :]
else:
x_t = cur_layer_input[t, :, :, :, :]
h, c = self.cell_list[layer_idx](input=x_t, hx=(h, c))
layer_output.append(h)
cur_layer_input = torch.stack(layer_output, dim=1) if self.batch_first else torch.stack(layer_output, dim=0)
new_hidden_state.append((h, c))
return cur_layer_input, new_hidden_state
class ConvLSTMForecast(nn.Module):
def __init__(self, input_channels, hidden_channels, kernel_size, num_layers):
super(ConvLSTMForecast, self).__init__()
self.conv_lstm = ConvLSTM(input_channels=input_channels,
hidden_channels=hidden_channels,
kernel_size=kernel_size,
num_layers=num_layers,
batch_first=True)
self.conv1 = nn.Conv2d(hidden_channels[-1], 16, kernel_size=(1, 1))
self.bn1 = nn.BatchNorm2d(16)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(16, 8, kernel_size=(1, 1))
self.bn2 = nn.BatchNorm2d(8)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(8, 1, kernel_size=(1, 1))
def forward(self, input):
output, _ = self.conv_lstm(input)
output = self.conv1(output[:, -1, :, :, :])
output = self.bn1(output)
output = self.relu1(output)
output = self.conv2(output)
output = self.bn2(output)
output = self.relu2(output)
output = self.conv3(output)
return output
```
这里的ConvLSTM模型由两个部分组成:ConvLSTM层和预测层。ConvLSTM层接收一个3D张量作为输入,每个时间步长的张量都有一个时间维度。预测层将ConvLSTM层的输出转换为预测结果。
在这个例子中,模型输入是一个形状为(batch_size, seq_len, channels, height, width)的5D张量,其中seq_len表示时间步长,channels表示输入特征的数量,height和width表示空间维度。模型输出是一个形状为(batch_size, 1, height, width)的4D张量,其中1表示预测的特征的数量。
该模型的训练和测试代码将根据具体问题而异。
阅读全文