stm32g031和AD7793通信

时间: 2023-11-03 13:06:11 浏览: 50
要使STM32G031和AD7793通信,您需要连接它们的SPI接口,并使用STM32G031的SPI驱动程序发送和接收数据。以下是一些基本步骤: 1. 连接SPI接口:将STM32G031和AD7793的SPI接口连接起来,包括SCK、MOSI、MISO和CS引脚。 2. 配置STM32G031的SPI:使用STM32G031的SPI驱动程序,配置SPI的时钟分频、数据位宽、传输模式等参数。 3. 初始化AD7793:使用SPI发送命令和配置寄存器,初始化AD7793,以便它能够正确地读取和转换传感器信号。 4. 读取AD7793数据:使用SPI发送读取数据的命令,然后接收AD7793返回的数据。 5. 处理AD7793数据:将接收到的数据转换为实际的传感器值,并进行必要的数据处理和计算。 需要注意的是,AD7793还有许多其他的配置和命令,您需要根据自己的应用需求来选择和配置它们。同时,SPI通信也需要注意时序和电气特性,以确保数据传输的正确性和可靠性。
相关问题

利用HAL库写stm32g031和AD7793通信

以下是利用HAL库写stm32g031和AD7793通信的基本步骤: 1. 配置SPI总线 首先需要配置SPI总线,包括时钟频率、数据位宽、传输模式等等。可以使用HAL_SPI_Init函数进行配置。 2. 配置AD7793寄存器 在进行通信之前,需要配置AD7793寄存器,包括工作模式、增益、数据速率等等。可以使用HAL_SPI_Transmit函数向AD7793发送配置命令。 3. 读取AD7793数据 完成配置之后,可以使用HAL_SPI_Receive函数读取AD7793的数据。需要注意的是,AD7793的数据是24位的,需要使用两次SPI传输才能读取完整的数据。 下面是一个简单的代码示例,用于读取AD7793的ID号: ``` #include "stm32g0xx_hal.h" #define AD7793_CS_Pin GPIO_PIN_4 #define AD7793_CS_GPIO_Port GPIOA SPI_HandleTypeDef hspi1; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_SPI1_Init(void); int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_SPI1_Init(); uint8_t tx_data[2] = {0x58, 0x00}; // AD7793 ID命令 uint8_t rx_data[3] = {0}; HAL_GPIO_WritePin(AD7793_CS_GPIO_Port, AD7793_CS_Pin, GPIO_PIN_RESET); // 使能AD7793 HAL_SPI_Transmit(&hspi1, tx_data, 2, HAL_MAX_DELAY); // 发送命令 HAL_SPI_Receive(&hspi1, rx_data, 3, HAL_MAX_DELAY); // 读取数据 HAL_GPIO_WritePin(AD7793_CS_GPIO_Port, AD7793_CS_Pin, GPIO_PIN_SET); // 禁用AD7793 uint32_t id = (rx_data[0] << 16) | (rx_data[1] << 8) | rx_data[2]; // 将数据合并为一个32位整数 id &= 0x00FFFFFF; // 只保留低24位 while (1) { // 循环等待 } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } static void MX_SPI1_Init(void) { hspi1.Instance = SPI1; hspi1.Init.Mode = SPI_MODE_MASTER; hspi1.Init.Direction = SPI_DIRECTION_2LINES; hspi1.Init.DataSize = SPI_DATASIZE_8BIT; hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; hspi1.Init.NSS = SPI_NSS_SOFT; hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi1.Init.TIMode = SPI_TIMODE_DISABLE; hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi1.Init.CRCPolynomial = 7; if (HAL_SPI_Init(&hspi1) != HAL_OK) { Error_Handler(); } } static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; __HAL_RCC_GPIOA_CLK_ENABLE(); HAL_GPIO_WritePin(AD7793_CS_GPIO_Port, AD7793_CS_Pin, GPIO_PIN_SET); GPIO_InitStruct.Pin = AD7793_CS_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(AD7793_CS_GPIO_Port, &GPIO_InitStruct); } ``` 在这个示例中,我们使用了SPI1总线和PA4引脚作为AD7793的片选信号。我们先向AD7793发送一个读取ID号的命令,然后读取3个字节的数据,将它们合并为一个32位整数,并且只保留低24位。最后我们可以使用这个ID号来确认是否成功与AD7793通信。

stm32g031 ulink

STM32G031是意法半导体推出的一款高性能微控制器,具有低功耗和丰富的外设功能。而ULINK是由Keil公司提供的一种调试和仿真工具。 ULINK是一种适用于ARM Cortex-M微控制器的调试适配器,可以用来连接STM32G031微控制器和开发环境,如MDK-ARM。通过ULINK,开发人员可以在开发过程中进行调试操作,如单步执行、断点设置、寄存器查看和修改等。此外,ULINK还具有实时追踪功能,可以实时显示程序运行时的信息,从而帮助开发人员分析和优化程序性能。 对于STM32G031微控制器,使用ULINK有以下几个优点: 1. 高效调试:ULINK可以提供实时的调试和仿真功能,帮助开发人员定位和修复程序中的错误。 2. 快速开发:使用ULINK,开发人员可以快速进行代码调试和检查,提高开发效率,缩短开发周期。 3. 方便性:ULINK支持与多种开发环境集成,如Keil MDK-ARM,使得开发人员可以方便地进行开发和调试操作。 4. 丰富的功能:ULINK不仅可以进行调试操作,还可以提供实时追踪和性能分析等功能,帮助开发人员更好地了解程序的执行情况。 总之,STM32G031微控制器配合ULINK调试适配器使用,可以提供高效、快速和方便的开发和调试环境,帮助开发人员更好地完成嵌入式系统的设计和开发工作。

相关推荐

最新推荐

recommend-type

RM0440 Reference manual STM32G4寄存器描述

STM32G4 Series 微控制器外围设备包括定时器、串行通信接口、脉冲宽度调制器、模拟数字转换器等。这些外围设备可以帮助开发者实现各种应用场景,如数据采集、数据传输、控制系统等。 知识点5: STM32G4 Series 微...
recommend-type

STM32G030x6_x8_C6_F6_J6_K6_C8_K8中文数据手册.pdf

STM32G030系列,嵌入式中文数据手册 ----已验证,属实
recommend-type

STM32G4高精度定时器及在数字电源中的应用.pdf

新推出的STM32G4针对高性能电机和数字电源控制,介绍了高精度定时器的应用
recommend-type

STM32的使用之SPI通信DMA模式

在STM32F303VC微控制器中,我们可以使用SPI通信DMA模式来实现自动数据的发送和接收。下面是基本步骤: 1. 配置好SPI相应引脚功能 2. 配置和初始化SPI 3. 初始化DMA 4. 片选信号选择要通信的设备 5. 打开DMA对应DMA...
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依