用python写一个gru代码
时间: 2023-09-17 08:06:02 浏览: 116
### 回答1:
我可以为你提供一个参考的GRU代码:import torch
import torch.nn as nn class GRU(nn.Module):
def __init__(self, input_size, hidden_size, num_layers):
super(GRU, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.gru = nn.GRU(input_size, hidden_size, num_layers)
def forward(self, input, hidden):
output, hidden = self.gru(input, hidden)
return output, hidden# 初始化GRU模型
input_size = 5
hidden_size = 10
num_layers = 2
gru = GRU(input_size, hidden_size, num_layers)
### 回答2:
Gated Recurrent Unit (GRU) 是一种常用的循环神经网络(RNN)结构之一,主要用于处理序列数据。下面是使用Python编写GRU网络的代码示例:
```python
import numpy as np
# Sigmoid激活函数
def sigmoid(x):
return 1 / (1 + np.exp(-x))
# 初始化GRU网络参数
def init_gru(hidden_size, input_size):
W_xz = np.random.randn(hidden_size, input_size)
W_hz = np.random.randn(hidden_size, hidden_size)
b_z = np.zeros((hidden_size, 1))
W_xr = np.random.randn(hidden_size, input_size)
W_hr = np.random.randn(hidden_size, hidden_size)
b_r = np.zeros((hidden_size, 1))
W_xh = np.random.randn(hidden_size, input_size)
W_hh = np.random.randn(hidden_size, hidden_size)
b_h = np.zeros((hidden_size, 1))
return {"W_xz": W_xz, "W_hz": W_hz, "b_z": b_z,
"W_xr": W_xr, "W_hr": W_hr, "b_r": b_r,
"W_xh": W_xh, "W_hh": W_hh, "b_h": b_h}
# 单步前向传播
def gru_forward(x, prev_h, params):
W_xz, W_hz, b_z = params["W_xz"], params["W_hz"], params["b_z"]
W_xr, W_hr, b_r = params["W_xr"], params["W_hr"], params["b_r"]
W_xh, W_hh, b_h = params["W_xh"], params["W_hh"], params["b_h"]
z = sigmoid(np.dot(W_xz, x) + np.dot(W_hz, prev_h) + b_z)
r = sigmoid(np.dot(W_xr, x) + np.dot(W_hr, prev_h) + b_r)
h_tilda = np.tanh(np.dot(W_xh, x) + np.dot(W_hh, (r * prev_h)) + b_h)
h = (1 - z) * prev_h + z * h_tilda
return h
# GRU网络前向传播
def gru_network(inputs, init_state, params):
h = init_state
h_states = [h]
for x in inputs:
h = gru_forward(x, h, params)
h_states.append(h)
return h_states
# 测试代码
hidden_size = 10
input_size = 5
# 构造输入序列和初始化状态
inputs = [np.random.randn(input_size, 1) for _ in range(10)]
init_state = np.zeros((hidden_size, 1))
# 初始化GRU网络参数
params = init_gru(hidden_size, input_size)
# GRU网络前向传播
h_states = gru_network(inputs, init_state, params)
print("输入序列:")
for i, x in enumerate(inputs):
print("输入{}: \n{}".format(i, x))
print("\nGRU网络隐藏状态序列:")
for i, h in enumerate(h_states):
print("隐藏状态{}: \n{}".format(i, h))
```
以上代码实现了一个简单的GRU网络,包含了初始化网络参数、单步前向传播和整个网络前向传播的函数。通过传入输入序列、初始隐藏状态和网络参数,可以获取网络的输出隐藏状态序列。
### 回答3:
Gated Recurrent Unit (GRU)是一种循环神经网络 (RNN) 的变体,常用于处理序列数据,并在自然语言处理领域中表现出色。下面是一个用Python实现的简单GRU代码:
```python
import torch
import torch.nn as nn
class GRU(nn.Module):
def __init__(self, input_size, hidden_size):
super(GRU, self).__init__()
self.hidden_size = hidden_size
self.reset_gate = nn.Sequential(
nn.Linear(input_size + hidden_size, hidden_size),
nn.Sigmoid()
)
self.update_gate = nn.Sequential(
nn.Linear(input_size + hidden_size, hidden_size),
nn.Sigmoid()
)
self.output_gate = nn.Sequential(
nn.Linear(input_size + hidden_size, hidden_size),
nn.Tanh()
)
def forward(self, input, hidden):
combined = torch.cat((input, hidden), 1)
reset = self.reset_gate(combined)
update = self.update_gate(combined)
reset_hidden = reset * hidden
combined_reset = torch.cat((input, reset_hidden), 1)
candidate = self.output_gate(combined_reset)
updated_hidden = (1 - update) * hidden + update * candidate
return updated_hidden
```
这是一个基本实现的GRU类。`__init__`方法中初始化了GRU中的三个门 (reset gate、update gate、output gate) ,每个门都由一个线性层和一个激活函数组成。`forward`方法接收输入和隐藏状态,并根据GRU的公式计算并返回更新后的隐藏状态。在计算过程中,通过拼接输入和隐藏状态来构建输入层,并根据公式计算重置门、更新门、候选值和更新后的隐藏状态。
这只是一个简单的GRU实现,实际的GRU模型还可能包含更多的层和其他调整。希望以上内容对您有帮助!
阅读全文