写一个卷积GRU的pytorch代码
时间: 2023-06-11 17:04:19 浏览: 177
当然,我可以为您提供一个简单的卷积GRU的PyTorch代码示例:
```python
import torch
import torch.nn as nn
# 定义卷积GRU模型
class ConvGRU(nn.Module):
def __init__(self, input_size, hidden_size, kernel_size, num_layers):
super(ConvGRU, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.kernel_size = kernel_size
self.num_layers = num_layers
self.conv_gates = nn.ModuleList()
self.conv_towers = nn.ModuleList()
self.height, self.width = None, None
for i in range(num_layers):
input_c = input_size if i == 0 else hidden_size
conv_gate = nn.Conv2d(in_channels=input_c + hidden_size,
out_channels=2 * hidden_size,
kernel_size=kernel_size,
padding=kernel_size // 2)
conv_tower = nn.Conv2d(in_channels=input_c,
out_channels=hidden_size,
kernel_size=kernel_size,
padding=kernel_size // 2)
self.conv_gates.append(conv_gate)
self.conv_towers.append(conv_tower)
def forward(self, input_, hidden):
if hidden is None:
size_h = [input_.size()[0], self.hidden_size, self.height, self.width]
hidden = torch.zeros(size_h, device=input_.device)
hidden_seq = []
h = hidden
for layer_idx in range(self.num_layers):
c_gate = self.conv_gates[layer_idx]
c_tower = self.conv_towers[layer_idx]
# 堆叠输入和隐藏状态的通道维度,对应于门控卷积层的in_channels
stacked_inputs = torch.cat([input_, h], dim=1)
# 计算门控和隐藏状态更新值
gates = c_gate(stacked_inputs)
reset_gate, update_gate = torch.split(gates, self.hidden_size, dim=1)
reset_gate = torch.sigmoid(reset_gate)
update_gate = torch.sigmoid(update_gate)
# 计算新的隐藏状态
content_tower = c_tower(input_)
transformed_content = reset_gate * h
transformed_tower = content_tower * update_gate
h = transformed_content + transformed_tower
hidden_seq.append(h)
return h, hidden_seq
def init_hidden(self, batch_size, height, width, device):
self.height, self.width = height, width
hidden = torch.zeros(batch_size, self.hidden_size, height, width, device=device)
return hidden
```
这是一个4层的卷积GRU模型,使用的是卷积门控单元。您可以使用此代码作为起点,根据自己的需求进行修改和扩展。希望对您有所帮助!
阅读全文