写一个输入图像数据集的卷积GRU的pytorch代码
时间: 2023-06-08 15:09:20 浏览: 174
好的,下面是代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ConvGRU(nn.Module):
def __init__(self, input_size, hidden_size, kernel_size, stride=1, padding=0):
super(ConvGRU, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
# define convolutional layers for input gate
self.conv_i = nn.Conv2d(input_size + hidden_size, hidden_size, kernel_size,
stride=stride, padding=padding)
# define convolutional layers for forget gate
self.conv_f = nn.Conv2d(input_size + hidden_size, hidden_size, kernel_size,
stride=stride, padding=padding)
# define convolutional layers for output gate
self.conv_o = nn.Conv2d(input_size + hidden_size, hidden_size, kernel_size,
stride=stride, padding=padding)
# define convolutional layers for cell state
self.conv_c = nn.Conv2d(input_size + hidden_size, hidden_size, kernel_size,
stride=stride, padding=padding)
def forward(self, input, hidden=None):
if hidden is None:
# initialize hidden state with zeros
hx = torch.zeros(input.size(0), self.hidden_size, input.size(2), input.size(3)).to(input.device)
else:
hx = hidden
# concatenate input with previous hidden state
combined = torch.cat((input, hx), dim=1)
# compute input, forget, and output gates as well as cell state
i = torch.sigmoid(self.conv_i(combined))
f = torch.sigmoid(self.conv_f(combined))
o = torch.sigmoid(self.conv_o(combined))
c = torch.tanh(self.conv_c(combined))
# compute new cell state and new hidden state
cell_state = f * hx + i * c
output = o * torch.tanh(cell_state)
return output, cell_state
```
这个 ConvGRU 模型的输入是一个 4 维的张量,形状为 (batch_size, input_size, height, width),其中 `input_size` 表示输入特征的数量,`height` 和 `width` 表示输入特征的尺寸。
这个模型包含四个卷积层,用于计算输入门、遗忘门、输出门和记忆单元。在每个时间步,将输入和上一个时间步的隐藏状态进行拼接,然后通过这四个卷积层计算四个门和记忆单元。最后,根据门的权重和记忆单元计算新时间步的隐藏状态和输出。
阅读全文