Matlab完成数字1-9的语音识别代码
时间: 2024-01-15 18:04:33 浏览: 75
以下是一个基于GMM的Matlab代码示例,用于数字1-9的语音识别:
```matlab
% Load training data
load('training_data.mat');
% Train GMM model for each digit
num_digits = 9;
models = cell(num_digits, 1);
for i = 1:num_digits
digit_samples = training_data{i};
num_samples = size(digit_samples, 1);
features = zeros(num_samples, num_features);
for j = 1:num_samples
sample = digit_samples{j};
% Preprocess sample
% ...
% Extract features from sample
features(j, :) = extract_features(sample);
end
% Train GMM model for digit i
models{i} = fitgmdist(features, num_gaussians);
end
% Load test data
load('test_data.mat');
% Test GMM model for each test sample
num_test_samples = size(test_data, 1);
results = zeros(num_test_samples, 1);
for i = 1:num_test_samples
sample = test_data{i};
% Preprocess sample
% ...
% Extract features from sample
features = extract_features(sample);
% Test sample against each digit GMM model
max_prob = -Inf;
for j = 1:num_digits
model = models{j};
prob = pdf(model, features);
if prob > max_prob
max_prob = prob;
results(i) = j;
end
end
end
% Evaluate results
correct = 0;
for i = 1:num_test_samples
if results(i) == test_labels(i)
correct = correct + 1;
end
end
accuracy = correct / num_test_samples;
fprintf('Accuracy: %.2f%%\n', accuracy * 100);
```
其中,`training_data`和`test_data`是已经预处理的训练数据和测试数据,每个元素是一个语音样本。`test_labels`是测试数据对应的标签,表示每个测试样本对应的数字。`num_features`是特征向量的维度,`num_gaussians`是每个数字的GMM模型中高斯分布的个数。`extract_features()`函数用于从语音样本中提取特征,这里可以使用MFCC等方法。
阅读全文