差分进化混合模拟退火MATLAB代码
时间: 2023-07-02 14:10:38 浏览: 82
基于遗传算法和模拟退火算法改进的混合模拟退火算法(MATLAB代码).rar
5星 · 资源好评率100%
以下是差分进化混合模拟退火的MATLAB代码示例:
```matlab
% 差分进化混合模拟退火
% 设置参数
n = 10; % 变量个数
N = 50; % 种群大小
F = 0.5; % 变异因子
CR = 0.8; % 交叉概率
T0 = 100; % 初始温度
alpha = 0.99; % 降温系数
T_min = 1e-8; % 终止温度
max_iter = 500; % 最大迭代次数
% 初始化种群
pop = rand(N,n);
% 计算适应度
fitness = zeros(N,1);
for i = 1:N
fitness(i) = obj_fun(pop(i,:));
end
% 记录最优解和最优适应度
[best_fit, idx] = min(fitness);
best_sol = pop(idx,:);
% 初始化温度
T = T0;
% 迭代优化
iter = 1;
while iter <= max_iter && T >= T_min
for i = 1:N
% 选择三个不同的个体
a = randi(N);
while a == i
a = randi(N);
end
b = randi(N);
while b == i || b == a
b = randi(N);
end
c = randi(N);
while c == i || c == a || c == b
c = randi(N);
end
% 变异操作
v = pop(a,:) + F * (pop(b,:) - pop(c,:));
% 边界处理
v(v < 0) = 0;
v(v > 1) = 1;
% 交叉操作
u = pop(i,:);
j_rand = randi(n);
for j = 1:n
if j == j_rand || rand() < CR
u(j) = v(j);
end
end
% 计算适应度
fitness_u = obj_fun(u);
% 更新最优解
if fitness_u < best_fit
best_fit = fitness_u;
best_sol = u;
end
% 模拟退火
delta_f = fitness_u - fitness(i);
if delta_f < 0 || rand() < exp(-delta_f / T)
pop(i,:) = u;
fitness(i) = fitness_u;
end
end
% 降温
T = alpha * T;
% 输出迭代信息
fprintf('Iter: %d, Best Fit: %.4f\n', iter, best_fit);
% 更新迭代次数
iter = iter + 1;
end
```
阅读全文