path = [goal]; prev = I(1); while prev > 0 path = [RRTree(prev,1:2); path]; prev = RRTree(prev,3); end

时间: 2024-04-01 10:36:13 浏览: 105
这段代码是在RRT(Rapidly-exploring Random Tree)算法中用于回溯路径。其中,RRTree是树结构,包含已经生成的所有树节点的坐标信息,I(1)是新节点在RRTree中的父节点索引,goal是路径的目标点。 首先,将路径的起点初始化为目标点goal。然后,通过循环回溯路径,直到回溯到起点。在循环中,首先将当前节点的坐标加入到路径中,然后根据当前节点的父节点索引prev,找到其父节点的坐标,并将其加入到路径中。然后,将prev更新为当前节点的父节点索引,以便下一次回溯。 通过这样的方式,可以从目标点开始,按照父节点索引回溯到起点,得到一条从起点到目标点的可行路径。 RRT算法是一种用于路径规划的随机采样算法,其基本思想是通过不断扩展树结构,生成一棵包含起点和终点的树,最终从树中找到一条可行的路径。在RRT算法中,需要回溯路径,以便得到从起点到目标点的可行路径。通过回溯路径的方式,可以有效地得到一条可行路径,并用于实际的路径规划应用中。
相关问题

将这段代码变成用matlab实现#include<bits/stdc++.h> using namespace std; struct Pos{ int p; int w; int s; int v; int Get(){ return p*8+w*4+s*2+v; } }; Pos Change(Pos a,int i){ if(i==0) a.p=abs(a.p-1); else if(i==1){ //商人和狼 if(a.p==a.w)a.w=abs(a.w-1); a.p=abs(a.p-1); } else if(i==2){ //商人和羊 if(a.p==a.s)a.s=abs(a.s-1); a.p=abs(a.p-1); } else { //商人和菜 if(a.p==a.v)a.v=abs(a.v-1); a.p=abs(a.p-1); } return a; } int Judge(Pos a) { if(a.p==a.s||(a.p==a.w&&a.w==a.v)) return true; return false; } int Judge(Pos a,Pos b){ if(a.w==b.w&&a.p==b.p&&a.s==b.s&&a.v==b.v ) return true; return false; } void GetLength(Pos start,Pos a,Pos *prev){ vector<Pos> path; Pos p = a; path.push_back(p); while (!Judge(p,start)) { path.push_back(prev[p.Get()]); p = prev[p.Get()]; } cout << "Shortest path length: " << path.size()<< endl; cout << "Shortest path: \n"; for (int i = path.size() - 1; i >= 0; i--) { cout << "(" << path[i].p << "," << path[i].w << "," << path[i].s << "," << path[i].v << ") \n"; } cout << endl; } void BFS(Pos start, Pos goal, int* f) { queue<Pos> q; int len = 0; Pos prev[16]; // 用于记录每个状态是由哪个状态转移而来 memset(f, 0, sizeof(f)); q.push(start); prev[start.Get()] = start; f[start.Get()] = 1; while (!q.empty()) { Pos a; a = q.front(); q.pop(); len++; if (Judge(a, goal)) { return GetLength(start,a,prev); } else { for (int i = 0; i < 4; i++) { Pos b; b = Change(a, i); if (Judge(b) && f[b.Get()] == 0) { q.push(b); f[b.Get()] = 1; prev[b.Get()] = a; // 记录当前状态是由哪个状态转移而来 } } } } } int main(){ int pathlength,f[16]; Pos start; Pos goal; start.p=0; start.s=0; start.w=0; start.v=0; goal.p=1; goal.s=1; goal.v=1; goal.w=1; for(int i=0;i<16;i++) f[i]=0; BFS(start,goal,f); return 0; }

好的,以下是用 Matlab 实现的代码: ```matlab % 定义结构体 Pos Pos.p = 0; Pos.w = 0; Pos.s = 0; Pos.v = 0; % 定义函数 Change function a = Change(a, i) if i == 0 a.p = abs(a.p - 1); elseif i == 1 if a.p == a.w a.w = abs(a.w - 1); end a.p = abs(a.p - 1); elseif i == 2 if a.p == a.s a.s = abs(a.s - 1); end a.p = abs(a.p - 1); else if a.p == a.v a.v = abs(a.v - 1); end a.p = abs(a.p - 1); end end % 定义函数 Judge function flag = Judge(a, b) if a.p == b.p && a.w == b.w && a.s == b.s && a.v == b.v flag = true; else flag = false; end end % 定义函数 GetLength function GetLength(start, a, prev) path = []; p = a; path = [path, p]; while ~Judge(p, start) path = [path, prev(p.p*8+p.w*4+p.s*2+p.v+1)]; p = prev(p.p*8+p.w*4+p.s*2+p.v+1); end disp(['Shortest path length: ', num2str(length(path))]); disp('Shortest path:'); for i = length(path):-1:1 disp(['(', num2str(path(i).p), ',', num2str(path(i).w), ',', num2str(path(i).s), ',', num2str(path(i).v), ')']); end end % 定义函数 BFS function BFS(start, goal, f) q = []; len = 0; prev = repmat(Pos, 16, 1); memset(f, 0, 16); q = [q, start]; prev(start.p*8+start.w*4+start.s*2+start.v+1) = start; f(start.p*8+start.w*4+start.s*2+start.v+1) = 1; while ~isempty(q) a = q(1); q(1) = []; len = len + 1; if Judge(a, goal) GetLength(start, a, prev); return else for i = 0:3 b = Change(a, i); if Judge(b) && f(b.p*8+b.w*4+b.s*2+b.v+1) == 0 q = [q, b]; f(b.p*8+b.w*4+b.s*2+b.v+1) = 1; prev(b.p*8+b.w*4+b.s*2+b.v+1) = a; end end end end end % 主函数 start.p = 0; start.s = 0; start.w = 0; start.v = 0; goal.p = 1; goal.s = 1; goal.v = 1; goal.w = 1; f = zeros(1, 16); BFS(start, goal, f); ``` 在上面的示例中,我们首先定义了结构体 `Pos`,并分别初始化其四个属性。接着定义了三个函数 `Change`、`Judge` 和 `GetLength`,分别对应原 C++ 代码中的三个函数。最后定义了主函数,在其中初始化起点和终点,并创建一个长度为16的数组 `f` 用于记录状态是否已经访问过。然后调用 `BFS` 函数进行广度优先搜索,找到从起点到终点的最短路径。

path = reconstructPath(prev, modifiedData, start, goal);怎么用matlab代码写出相同意思

在 MATLAB 中,你可以使用以下代码来实现与 "path = reconstructPath(prev, modifiedData, start, goal);" 相同的功能: ```matlab function path = reconstructPath(prev, modifiedData, start, goal) currentNode = goal; path = [currentNode]; while currentNode ~= start currentNode = prev(currentNode); path = [currentNode path]; end end ``` 这段代码定义了一个名为 `reconstructPath` 的函数。它接受四个参数:`prev` 是一个包含节点之间关系的映射,`modifiedData` 是一些修改后的数据,`start` 是起始节点,`goal` 是目标节点。 函数内部使用一个循环来从目标节点开始,通过查找 `prev` 映射中的上一个节点,逐步构建路径。最后返回构建好的路径 `path`。注意,这里假设 `prev` 变量是一个映射数据结构,你需要根据具体情况进行相应的修改。
阅读全文

相关推荐

最新推荐

recommend-type

基于Matlab极化天线和目标之间的信号传输建模 matlab代码.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

移动通信网络中集中式无线电接入网的数据处理需求与性能指标分析

内容概要:本文提出了一种新的分析框架,用于评估集中式无线电接入网(RAN)的数据处理需求。作者定义了若干性能指标,如计算失效概率、复杂度、增益、多样性和复杂度率之间的权衡。该模型基于块瑞利衰落、距离相关路径损耗和部分功率控制假设下进行仿真验证,证明了集中计算资源的优势。 适用人群:通信工程领域的研究人员、5G技术开发人员和无线网络优化专家。 使用场景及目标:①理解集中式RAN架构对网络性能的影响;②评估集中化数据处理资源在提高吞吐量方面的效益;③量化集中式RAN系统的数据处理复杂度和可靠性。 其他说明:文章通过对多种场景和参数设置的仿真研究,展示了集中式RAN系统相对于传统分布式系统的优越性,为未来移动网络的设计提供了理论支持和技术依据。
recommend-type

444.exe44444

444.exe44444
recommend-type

华为 ArkUI 框架的创新与生态探索.pdf

华为 ArkUI 框架的创新与生态探索.pdf
recommend-type

hufuman压缩算法,实现数据的压缩与解压缩

哈夫曼解压缩算法实现
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。