实现二叉树的基本算法: (1)创建二叉树 (2)二叉树的遍历 (3)求二叉树的深度 (4)求二叉树的叶子数

时间: 2023-11-14 14:28:49 浏览: 34
好,我来为您介绍实现二叉树的基本算法。 (1)创建二叉树 二叉树的创建可以通过递归实现。首先创建一个空节点,然后依次输入左右子树的值,如果左右子树的值为空,则为NULL。具体代码如下: ```c++ #include<iostream> using namespace std; struct TreeNode{ int val; TreeNode* left; TreeNode* right; TreeNode(int x):val(x),left(NULL),right(NULL){} }; TreeNode* createTree(){ int val; cin>>val; if(val == -1){ return NULL; } TreeNode* root = new TreeNode(val); root->left = createTree(); root->right = createTree(); return root; } ``` (2)二叉树的遍历 二叉树的遍历有三种方式:前序遍历、中序遍历和后序遍历。可以通过递归实现。具体代码如下: 前序遍历: ```c++ void preorder(TreeNode* root){ if(root == NULL){ return; } cout<<root->val<<" "; preorder(root->left); preorder(root->right); } ``` 中序遍历: ```c++ void inorder(TreeNode* root){ if(root == NULL){ return; } inorder(root->left); cout<<root->val<<" "; inorder(root->right); } ``` 后序遍历: ```c++ void postorder(TreeNode* root){ if(root == NULL){ return; } postorder(root->left); postorder(root->right); cout<<root->val<<" "; } ``` (3)求二叉树的深度 求二叉树的深度可以通过递归实现。具体代码如下: ```c++ int maxDepth(TreeNode* root){ if(root == NULL){ return 0; } int leftDepth = maxDepth(root->left); int rightDepth = maxDepth(root->right); return max(leftDepth,rightDepth) + 1; } ``` (4)求二叉树的叶子数 求二叉树的叶子数可以通过递归实现。具体代码如下: ```c++ int leafNum(TreeNode* root){ if(root == NULL){ return 0; } if(root->left == NULL && root->right == NULL){ return 1; } int leftNum = leafNum(root->left); int rightNum = leafNum(root->right); return leftNum + rightNum; } ``` 以上就是二叉树的基本算法的实现,希望对您有所帮助。

相关推荐

最新推荐

recommend-type

用Python实现二叉树、二叉树非递归遍历及绘制的例子

今天小编就为大家分享一篇用Python实现二叉树、二叉树非递归遍历及绘制的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法

主要介绍了C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法,涉及C++二叉树的定义、遍历、统计相关操作技巧,需要的朋友可以参考下
recommend-type

通过先序遍历和中序遍历后的序列还原二叉树(实现方法)

下面小编就为大家带来一篇通过先序遍历和中序遍历后的序列还原二叉树(实现方法)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

C#实现二叉树遍历算法

 Console.WriteLine("先序遍历方法遍历二叉树:");  PreOrder(rootNode);  Console.WriteLine("中序遍历方法遍历二叉树:");  MidOrder(rootNode);  Console.WriteLine("后序遍历方法遍历二叉树:");  ...
recommend-type

数据结构综合课设二叉树的建立与遍历.docx

1.问题描述: 建立一棵二叉树,并对其进行遍历(先序、中序、后序),打印输出遍历结果。 2.基本要求: 从键盘接受输入(先序),以二叉链表作为存储结构,建立二叉树(以先序来建立...采用非递归算法实现二叉树遍历。
recommend-type

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节 线性代数的核心问题是求解方程组。这些方程都是线性的,即未知数仅与数相乘——我们绝不会 遇见 x 乘以 y。我们的第一个线性方程组较小。接下来你来看看它引申出多远: 两个方程 两个未知数 x − 2y = 1 3x + 2y = 11 (1) 我们一次从一个行开始。第一个方程 x − 2y = 1 得出了 xy 平面的一条直线。由于点 x = 1, y = 0 解 出该方程,因此它在这条直线上。因为 3 − 2 = 1,所以点 x = 3, y = 1 也在这条直线上。若我们选择 x = 101,那我们求出 y = 50。 这条特定直线的斜率是 12,是因为当 x 变化 2 时 y 增加 1。斜率在微积分中很重要,然而这是线 性代数! 图 2.1 将展示第一条直线 x − 2y = 1。此“行图”中的第二条直线来自第二个方程 3x + 2y = 11。你 不能错过两条线的交点 x = 3, y = 1。点 (3, 1) 位于两条线上并且解出两个方程。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

识别MATLAB微分方程求解中的混沌行为:分析非线性方程混沌行为的实用技巧

![matlab求解微分方程](https://img-blog.csdnimg.cn/2021062810300367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_70) # 1. MATLAB微分方程求解概述 微分方程是描述物理、工程和金融等领域中动态系统的数学模型。MATLAB提供了强大的工具来求解微分方程,包括内置求解器和自定义函数
recommend-type

physon如何做ERP系统

作为一个AI语言模型,我可以给您提供一些基本的建议和思路: 1.明确需求和目标:在开始开发ERP系统之前,需要明确您的业务需求和目标,了解您的业务流程、流程数据、员工角色和权限、财务管理等方面的要求,这样才能更好的设计和开发ERP系统。 2.选择技术框架和开发工具:选择合适的技术框架和开发工具是ERP系统开发的关键。选择一种流行的技术框架和工具可以提高开发效率和质量。 3.设计数据库:ERP系统需要一个功能强大的数据库来存储数据。设计数据库需要考虑数据的完整性、安全性和可扩展性。 4.设计系统架构:系统架构是ERP系统的骨架,需要考虑系统的可扩展性、可维护性和性能。 5.开发和测试:
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。