现有c1.pcd切片点云数据。实现python双向最近点搜索法求点云切片面积
时间: 2024-03-10 09:48:15 浏览: 194
TxtToPCD_.txt转换为.pcd_txttopcd_pcd点云_
双向最近点搜索算法(Bidirectional Point-to-Plane ICP)是一种常用的点云匹配算法,可以用于点云切片面积的计算。以下是使用 open3d 库进行点云切片和面积计算的示例代码:
```python
import open3d as o3d
import numpy as np
# 读取点云数据
pcd = o3d.io.read_point_cloud("c1.pcd")
# 定义切片平面的法向量和截距
plane_normal = [0, 0, 1]
plane_origin = [0, 0, 0]
# 对点云进行切片
plane_equation = np.append(plane_normal, -np.dot(plane_normal, plane_origin))
polygon = o3d.geometry.PointCloud()
polygon.points = o3d.utility.Vector3dVector(np.array(pcd.points))
polygon.paint_uniform_color([1, 0, 0])
polygon = polygon.crop_plane(plane_equation, plane_origin, negative=False)
# 定义双向最近点搜索算法的参数
distance_threshold = 0.01
trans_init = np.identity(4)
# 对投影多边形和原始点云进行双向最近点搜索
polygon_tree = o3d.geometry.KDTreeFlann(np.array(polygon.points))
pcd_tree = o3d.geometry.KDTreeFlann(np.array(pcd.points))
dists = []
for i in range(len(polygon.points)):
[_, idx, _] = pcd_tree.search_knn_vector_3d(polygon.points[i], 1)
[_, _, dist] = polygon_tree.search_knn_vector_3d(pcd.points[idx[0]], 1)
dists.append(dist)
for i in range(len(pcd.points)):
[_, idx, _] = polygon_tree.search_knn_vector_3d(pcd.points[i], 1)
[_, _, dist] = pcd_tree.search_knn_vector_3d(polygon.points[idx[0]], 1)
dists.append(dist)
# 计算投影多边形的面积
area = np.sum(np.array(dists) < distance_threshold) / len(polygon.points) * np.sum(polygon.get_axis_aligned_bounding_box().extent)
print("投影多边形的面积为:", area)
```
其中,`read_point_cloud` 函数用于读取点云数据,`crop_plane` 函数用于对点云进行切片,`KDTreeFlann` 函数用于构建点云的 KD 树,从而进行双向最近点搜索。搜索过程中,我们需要计算每个点到另一个点云的最近距离,并统计距离小于阈值的点的个数,最终根据点的个数和投影多边形的包围盒面积计算投影多边形的面积。
阅读全文