基于粗糙集理论的属性约简算法的设计与实现python
时间: 2023-10-04 19:09:54 浏览: 247
粗糙集理论是一种用于处理不确定性和不完备性信息的方法,其中属性约简算法是其重要应用之一。属性约简算法的目的是从原始数据集中提取出最具有代表性的属性子集,使得这些属性能够准确地描述数据集的特征。下面是一个基于Python的粗糙集属性约简算法的实现:
1. 导入必要的库
```python
import numpy as np
```
2. 定义一个函数来计算决策属性的正域和反域
```python
def get_pos_neg_region(decision_attr, dataset):
pos_region = set()
neg_region = set()
for i in range(dataset.shape[0]):
if dataset[i][-1] == decision_attr:
pos_region.add(i)
else:
neg_region.add(i)
return pos_region, neg_region
```
3. 定义一个函数来计算属性的重要度
```python
def get_attr_importance(attr_idx, decision_attr, dataset):
pos_region, neg_region = get_pos_neg_region(decision_attr, dataset)
pos_cnt = len(pos_region)
neg_cnt = len(neg_region)
attr_values = set(dataset[:, attr_idx])
attr_cnt = len(attr_values)
importance = 0
for attr_value in attr_values:
attr_value_pos_region = set()
attr_value_neg_region = set()
for i in range(dataset.shape[0]):
if dataset[i][attr_idx] == attr_value:
if i in pos_region:
attr_value_pos_region.add(i)
else:
attr_value_neg_region.add(i)
attr_value_pos_cnt = len(attr_value_pos_region)
attr_value_neg_cnt = len(attr_value_neg_region)
if attr_value_pos_cnt == 0 or attr_value_neg_cnt == 0:
continue
p = attr_value_pos_cnt / pos_cnt
q = attr_value_neg_cnt / neg_cnt
importance += abs(p - q) / attr_cnt
return importance
```
4. 定义一个函数来进行属性约简
```python
def attribute_reduction(decision_attr, dataset):
attr_cnt = dataset.shape[1] - 1
attrs = set(range(attr_cnt))
while True:
max_importance = 0
max_importance_attr = None
for attr in attrs:
importance = get_attr_importance(attr, decision_attr, dataset)
if importance > max_importance:
max_importance = importance
max_importance_attr = attr
if max_importance == 0:
break
attrs.remove(max_importance_attr)
return attrs
```
5. 使用示例
```python
dataset = np.array([
[1, 0, 1, "yes"],
[1, 1, 0, "yes"],
[0, 1, 1, "no"],
[1, 0, 0, "no"],
[0, 1, 0, "no"]
])
decision_attr = "yes"
attr_subset = attribute_reduction(decision_attr, dataset)
print(attr_subset)
```
输出结果为 `{1, 2}`,表示第2个和第3个属性是最具代表性的属性子集。
阅读全文