matlab中该函数f的导数是多少:posidx = v1>0;k=1; f = sum(v1(posidx)) - k;
时间: 2023-12-06 08:40:19 浏览: 133
函数f的导数可以通过对v1求导得到,因为posidx和k都是常数。
假设v1是一个向量,那么f的导数可以表示为:
df/dv1 = d/dv1 (sum(v1(posidx)) - k)
根据链式法则,可以将其分解为:
df/dv1 = d/dv1 (sum(v1(posidx))) - d/dv1(k)
由于k是一个常数,所以d/dv1(k) = 0,因此:
df/dv1 = d/dv1 (sum(v1(posidx)))
对于sum(v1(posidx)),我们可以将其展开为:
sum(v1(posidx)) = v1(1)*posidx(1) + v1(2)*posidx(2) + ... + v1(n)*posidx(n)
其中n是v1的长度。因此,对sum(v1(posidx))求导得到:
d/dv1(sum(v1(posidx))) = posidx(1)*d/dv1(v1(1)) + posidx(2)*d/dv1(v1(2)) + ... + posidx(n)*d/dv1(v1(n))
由于v1中只有大于0的元素对f有贡献,因此posidx(i)等于1时,d/dv1(v1(i))等于1;posidx(i)等于0时,d/dv1(v1(i))等于0。因此,df/dv1可以进一步化简为:
df/dv1 = posidx
因此,对于给定的函数f,其导数是一个与v1同样长度的向量posidx,其中posidx(i)等于1表示v1(i)大于0,posidx(i)等于0表示v1(i)小于等于0。
相关问题
matlab代码解释:function [x ft] = EProjSimplex_new(v, k) if nargin < 2 k = 1; end ft=1; n =length(v); v0 = v-mean(v) + k/n; %vmax = max(v0); vmin = min(v0); if vmin < 0 f = 1; lambda_m = 0; while abs(f) > 10^-10 v1 = v0 - lambda_m; posidx = v1>0; npos = sum(posidx); g = -npos; f = sum(v1(posidx)) - k; lambda_m = lambda_m - f/g; ft=ft+1; if ft > 100 x = max(v1,0); break; end; end; x = max(v1,0); else x = v0; end;
这段 Matlab 代码定义了一个名为 EProjSimplex_new 的函数,它可以用于求解非负实数向量的投影问题。具体来说,给定一个向量 v 和一个正整数 k,函数会返回一个非负实数向量 x,使得 x 满足以下条件:
1. 所有分量都大于等于 0;
2. 所有分量之和等于 k;
3. x 距离 v 的欧几里得距离最小。
函数的参数说明如下:
- v:需要进行投影的向量,类型为一维数组;
- k:一个正整数,表示向量的分量之和应当等于 k。默认值为 1。
函数的实现过程如下:
1. 将向量 v 的所有分量减去均值,并加上 k/n,其中 n 为向量的长度。这一步的目的是将向量 v 的分量之和调整为 k;
2. 如果调整后的向量中存在负分量,则使用牛顿迭代法来求解最优的非负向量。具体来说,首先初始化一个参数 lambda_m=0,然后不断迭代计算 v1 = v0 - lambda_m,其中 v0 为调整后的向量,posidx 表示 v1 中大于 0 的分量的下标集合,npos 表示 v1 中大于 0 的分量的个数,g 表示目标函数的一阶导数,f 表示目标函数的值。每次迭代更新 lambda_m 的值,直到目标函数的值小于一个给定的阈值(此处为 10^-10)或者迭代次数超过 100 次。最终得到的向量 x 即为所求最优非负向量;
3. 如果调整后的向量中不存在负分量,则直接取 v0 作为最优解。
函数的输出结果包括最优向量 x 和迭代次数 ft。
阅读全文
相关推荐














