matlab中该函数f的导数是多少:posidx = v1>0;k=1; f = sum(v1(posidx)) - k;

时间: 2023-12-06 18:40:19 浏览: 30
函数f的导数可以通过对v1求导得到,因为posidx和k都是常数。 假设v1是一个向量,那么f的导数可以表示为: df/dv1 = d/dv1 (sum(v1(posidx)) - k) 根据链式法则,可以将其分解为: df/dv1 = d/dv1 (sum(v1(posidx))) - d/dv1(k) 由于k是一个常数,所以d/dv1(k) = 0,因此: df/dv1 = d/dv1 (sum(v1(posidx))) 对于sum(v1(posidx)),我们可以将其展开为: sum(v1(posidx)) = v1(1)*posidx(1) + v1(2)*posidx(2) + ... + v1(n)*posidx(n) 其中n是v1的长度。因此,对sum(v1(posidx))求导得到: d/dv1(sum(v1(posidx))) = posidx(1)*d/dv1(v1(1)) + posidx(2)*d/dv1(v1(2)) + ... + posidx(n)*d/dv1(v1(n)) 由于v1中只有大于0的元素对f有贡献,因此posidx(i)等于1时,d/dv1(v1(i))等于1;posidx(i)等于0时,d/dv1(v1(i))等于0。因此,df/dv1可以进一步化简为: df/dv1 = posidx 因此,对于给定的函数f,其导数是一个与v1同样长度的向量posidx,其中posidx(i)等于1表示v1(i)大于0,posidx(i)等于0表示v1(i)小于等于0。
相关问题

matlab代码解释:function [x ft] = EProjSimplex_new(v, k) if nargin < 2 k = 1; end ft=1; n =length(v); v0 = v-mean(v) + k/n; %vmax = max(v0); vmin = min(v0); if vmin < 0 f = 1; lambda_m = 0; while abs(f) > 10^-10 v1 = v0 - lambda_m; posidx = v1>0; npos = sum(posidx); g = -npos; f = sum(v1(posidx)) - k; lambda_m = lambda_m - f/g; ft=ft+1; if ft > 100 x = max(v1,0); break; end; end; x = max(v1,0); else x = v0; end;

这段 Matlab 代码定义了一个名为 EProjSimplex_new 的函数,它可以用于求解非负实数向量的投影问题。具体来说,给定一个向量 v 和一个正整数 k,函数会返回一个非负实数向量 x,使得 x 满足以下条件: 1. 所有分量都大于等于 0; 2. 所有分量之和等于 k; 3. x 距离 v 的欧几里得距离最小。 函数的参数说明如下: - v:需要进行投影的向量,类型为一维数组; - k:一个正整数,表示向量的分量之和应当等于 k。默认值为 1。 函数的实现过程如下: 1. 将向量 v 的所有分量减去均值,并加上 k/n,其中 n 为向量的长度。这一步的目的是将向量 v 的分量之和调整为 k; 2. 如果调整后的向量中存在负分量,则使用牛顿迭代法来求解最优的非负向量。具体来说,首先初始化一个参数 lambda_m=0,然后不断迭代计算 v1 = v0 - lambda_m,其中 v0 为调整后的向量,posidx 表示 v1 中大于 0 的分量的下标集合,npos 表示 v1 中大于 0 的分量的个数,g 表示目标函数的一阶导数,f 表示目标函数的值。每次迭代更新 lambda_m 的值,直到目标函数的值小于一个给定的阈值(此处为 10^-10)或者迭代次数超过 100 次。最终得到的向量 x 即为所求最优非负向量; 3. 如果调整后的向量中不存在负分量,则直接取 v0 作为最优解。 函数的输出结果包括最优向量 x 和迭代次数 ft。

详细解释这段代码:function [x ft] = EProjSimplex_new(v, k) % %% Problem % % min 1/2 || x - v||^2 % s.t. x>=0, 1'x=k % if nargin < 2 k = 1; end; ft=1; n = length(v); v0 = v-mean(v) + k/n; %vmax = max(v0); vmin = min(v0); if vmin < 0 f = 1; lambda_m = 0; while abs(f) > 10^-10 v1 = v0 - lambda_m; posidx = v1>0; npos = sum(posidx); g = -npos; f = sum(v1(posidx)) - k; lambda_m = lambda_m - f/g; ft=ft+1; if ft > 100 x = max(v1,0); break; end; end; x = max(v1,0); else x = v0; end;

这段代码实现了求解以下优化问题的算法: $$\begin{aligned} &\min_{x\in \mathbb{R}^n} \frac{1}{2}\|x-v\|^2 \\ &\text{s.t. } x\geq 0,\quad \mathbf{1}^\top x=k \end{aligned}$$ 其中,$v\in \mathbb{R}^n$ 为给定向量,$k\in \mathbb{R}$ 为常数,$\mathbf{1}\in \mathbb{R}^n$ 为全1向量。 具体地,该算法实现了欧几里得投影法来求解上述问题。解析式为: $$x = \mathcal{P}(v) = [\max(v_1-\theta,0),\dots,\max(v_n-\theta,0)]$$ 其中,$\theta = \frac{1}{n}(\sum_{i=1}^n v_i-k)_+$,$(\cdot)_+=\max\{\cdot,0\}$。 该算法的具体实现如下: ```matlab function [x ft] = EProjSimplex_new(v, k) % 求解问题: % min 1/2 || x - v||^2 % s.t. x>=0, 1'x=k if nargin < 2 k = 1; end ft=1; n = length(v); v0 = v-mean(v) + k/n; % 中心化 vmin = min(v0); % 寻找最小值 if vmin < 0 f = 1; lambda_m = 0; while abs(f) > 10^-10 v1 = v0 - lambda_m; posidx = v1>0; npos = sum(posidx); g = -npos; f = sum(v1(posidx)) - k; lambda_m = lambda_m - f/g; ft=ft+1; if ft > 100 x = max(v1,0); break; end end x = max(v1,0); else x = v0; end ``` 具体来说,该函数的输入参数为一个行向量 $v$ 和一个标量 $k$,输出为一个行向量 $x$ 和一个迭代次数 $ft$。其中,$x$ 为上述优化问题的最优解,$ft$ 表示算法需要迭代的次数。 算法的具体实现步骤如下: 1. 对 $v$ 进行中心化,即令 $v_0= v-\frac{1}{n}\sum_{i=1}^n v_i+\frac{k}{n}$; 2. 寻找 $v_0$ 的最小值 $v_{\min}$; 3. 如果 $v_{\min}\geq 0$,则直接返回 $v_0$; 4. 否则,使用欧几里得投影法迭代求解最优解 $x$: - 初始化 $\lambda_m = 0$ 和 $f=1$; - 当 $|f|>10^{-10}$ 且迭代次数 $ft\leq 100$ 时,执行以下操作: 1. 计算 $v_1 = v_0-\lambda_m$; 2. 找到 $v_1$ 中所有大于0的元素,得到下标集合 $posidx$ 和个数 $npos$; 3. 计算 $f = \sum_{i=1}^n (v_{1,i})_{+} - k$ 和 $g = -npos$; 4. 令 $\lambda_m = \lambda_m - f/g$; 5. 执行迭代次数加1; - 如果迭代次数超过100次,直接返回 $x=\max\{v_1,0\}$; - 否则,返回 $x=\max\{v_1,0\}$。 其中,$(\cdot)_{+}=\max\{\cdot,0\}$。

相关推荐

最新推荐

recommend-type

matlab函数sum和size用法-matlab函数sum和size用法.doc

matlab函数sum和size用法-matlab函数sum和size用法.doc matlab函数sum和size用法.doc sum函数解释函数功能 求数组元素的总和 使用方法B = sum 返回数组A不同维数的总和。 如果A是一个...
recommend-type

新版Matlab中神经网络训练函数Newff的详细讲解-新版Matlab中神经网络训练函数Newff的使用方法.doc

新版Matlab中神经网络训练函数Newff的详细讲解-新版Matlab中神经网络训练函数Newff的使用方法.doc 本帖最后由 小小2008鸟 于 2013-1-15 21:42 编辑 新版Matlab中神经网络训练函数Newff的详细讲解 一、 ...
recommend-type

matlab函数大全-matlab函数大全.doc

matlab函数大全-matlab函数大全.doc 比较白痴的东西,不过对初学者也许有用,特分享一下。不要喷我哦!函数具体用法可以用help查一下。附件内容与下面一样的。 Aabs 绝对值、模、字符的ASCII码值 acos 反余弦 ...
recommend-type

HTML+CSS制作的个人博客网页.zip

如标题所述,内有详细说明
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依