决策树预剪枝python实现
时间: 2023-10-16 10:10:34 浏览: 169
决策树预剪枝是指在决策树构建过程中,在决策树的节点划分前,先对该节点进行估计,若当前节点的划分不能带来决策树泛化性能提升,则停止划分并将该节点标记为叶子节点。下面是决策树预剪枝的Python实现:
```python
def pre_pruning_decision_tree(data, labels, features, epsilon):
"""
决策树预剪枝
:param data: 数据集
:param labels: 数据集标签
:param features: 特征集
:param epsilon: 阈值
:return: 决策树
"""
# 若数据集为空,则返回None
if len(labels) == 0:
return None
# 若数据集中所有实例属于同一类别Ck,则返回单节点树T,其类别为Ck
if len(set(labels)) == 1:
return labels[0]
# 若特征集为空,则返回单节点树T,其类别为数据集中实例数最多的类别
if len(features) == 0:
return majority_cnt(labels)
# 计算数据集的熵
base_entropy = calc_entropy(labels)
# 初始化最优信息增益和最优特征
best_info_gain, best_feature = -1, -1
# 遍历特征集中的所有特征,选择信息增益最大的特征
for feature in features:
# 计算特征A对数据集D的信息增益g(D,A)
new_entropy = calc_cond_entropy(data, labels, feature)
info_gain = base_entropy - new_entropy
# 若信息增益小于阈值epsilon,则不进行划分,直接返回单节点树T,其类别为数据集中实例数最多的类别
if info_gain < epsilon:
return majority_cnt(labels)
# 更新最优信息增益和最优特征
if info_gain > best_info_gain:
best_info_gain = info_gain
best_feature = feature
# 若最优特征为空,则返回单节点树T,其类别为数据集中实例数最多的类别
if best_feature == -1:
return majority_cnt(labels)
# 构建决策树
decision_tree = {best_feature: {}}
# 从特征集中删除已选择的最优特征
features.remove(best_feature)
# 获取最优特征的所有取值
feature_values = set([data[i][best_feature] for i in range(len(data))])
# 遍历最优特征的所有取值,递归构建决策树
for value in feature_values:
sub_features = features[:]
sub_data, sub_labels = split_data(data, labels, best_feature, value)
decision_tree[best_feature][value] = pre_pruning_decision_tree(sub_data, sub_labels, sub_features, epsilon)
return decision_tree
```
阅读全文