opencvsharp 分块并行计算canny找直线边编写函数,参数从白到黑 从左到右,将所有找到的边合并
时间: 2023-11-27 19:52:59 浏览: 295
以下是使用OpenCvSharp进行分块并行计算canny找直线边,并将所有找到的边合并的函数代码:
```csharp
using System;
using OpenCvSharp;
public static class EdgeDetection
{
public static Mat FindLines(Mat src, int blockSize)
{
// Convert to grayscale
Mat gray = new Mat();
Cv2.CvtColor(src, gray, ColorConversionCodes.BGR2GRAY);
// Split image into blocks
int rows = src.Rows / blockSize;
int cols = src.Cols / blockSize;
Mat[] blocks = new Mat[rows * cols];
for (int i = 0; i < rows; i++)
{
for (int j = 0; j < cols; j++)
{
Rect roi = new Rect(j * blockSize, i * blockSize, blockSize, blockSize);
blocks[i * cols + j] = new Mat(gray, roi);
}
}
// Find edges in each block using Canny algorithm
Parallel.For(0, blocks.Length, i =>
{
Cv2.Canny(blocks[i], blocks[i], 50, 150);
});
// Merge all edges into one image
Mat edges = new Mat(gray.Size(), MatType.CV_8UC1, Scalar.All(0));
for (int i = 0; i < rows; i++)
{
for (int j = 0; j < cols; j++)
{
Rect roi = new Rect(j * blockSize, i * blockSize, blockSize, blockSize);
Mat blockEdges = new Mat(edges, roi);
Cv2.BitwiseOr(blocks[i * cols + j], blockEdges, blockEdges);
}
}
// Find lines in merged edges using Hough transform
LineSegmentPoint[] lines = Cv2.HoughLinesP(edges, 1, Math.PI / 180, 50, 50, 10);
foreach (LineSegmentPoint line in lines)
{
Cv2.Line(src, line.P1, line.P2, Scalar.Red, 2);
}
return src;
}
}
```
这个函数接受两个参数:输入图像src和块大小blockSize。它首先将输入图像转换为灰度图像,然后将其分成大小为blockSize x blockSize的块。然后,它并行处理每个块,使用Canny算法找到边缘。接下来,它将所有块的边缘合并为一个图像,使用Hough变换找到线段,并在输入图像上绘制这些线段。最后,它返回绘制了线段的输入图像。
阅读全文