对https://archive.ics.uci.edu/ml/datasets/Adult数据集构建决策树分类器,测试分类器性能,列表展示分类器性能指标,画出ROC曲线的python代码
时间: 2023-07-05 14:19:40 浏览: 180
好的,针对您的问题,我会为您提供一份基于决策树的分类器代码,以及测试性能指标和ROC曲线的绘制。
首先,您需要下载数据集并加载数据。您可以使用以下代码完成此操作:
```python
import pandas as pd
import numpy as np
# 加载数据集
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data"
cols = ["age", "workclass", "fnlwgt", "education", "education_num", "marital_status", "occupation", "relationship", "race", "sex", "capital_gain", "capital_loss", "hours_per_week", "native_country", "income"]
data = pd.read_csv(url, header=None, names=cols)
# 将目标变量转换为二元变量
data["income"] = np.where(data["income"] == " >50K", 1, 0)
# 将分类变量转换为数值变量
data = pd.get_dummies(data, columns=["workclass", "education", "marital_status", "occupation", "relationship", "race", "sex", "native_country"])
```
接下来,您需要将数据集拆分为训练集和测试集。您可以使用以下代码完成此操作:
```python
from sklearn.model_selection import train_test_split
# 将数据集拆分为训练集和测试集
X = data.drop("income", axis=1)
y = data["income"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
现在,您可以使用sklearn库中的DecisionTreeClassifier来训练一个决策树分类器。您可以使用以下代码完成此操作:
```python
from sklearn.tree import DecisionTreeClassifier
# 训练决策树分类器
clf = DecisionTreeClassifier(max_depth=5)
clf.fit(X_train, y_train)
```
接下来,您可以使用测试集来评估分类器的性能。您可以使用以下代码完成此操作:
```python
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
# 预测测试集的目标变量
y_pred = clf.predict(X_test)
# 计算分类器性能指标
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
roc_auc = roc_auc_score(y_test, y_pred)
# 列出分类器性能指标
print("Accuracy:", accuracy)
print("Precision:", precision)
print("Recall:", recall)
print("F1 Score:", f1)
print("ROC AUC Score:", roc_auc)
```
最后,您可以使用sklearn库中的plot_roc_curve函数来绘制ROC曲线。您可以使用以下代码完成此操作:
```python
from sklearn.metrics import plot_roc_curve
# 绘制ROC曲线
plot_roc_curve(clf, X_test, y_test)
```
阅读全文