WARNING:tensorflow:Calling GradientTape.gradient on a persistent tape inside its context is significantly less efficient than calling it outside the context (it causes the gradient ops to be recorded on the tape, leading to increased CPU and memory usage). Only call GradientTape.gradient inside the context if you actually want to trace the gradient in order to compute higher order derivatives.
时间: 2024-02-07 10:02:23 浏览: 259
mmu_context.rar_The Calling
这个警告是因为当您在`tf.GradientTape`中调用`persistent=True`时,在上下文内调用`gradient()`函数会导致梯度操作被记录在磁带上,从而导致CPU和内存的大量使用。只有在需要计算更高阶导数时,才在上下文内调用`gradient()`函数以跟踪梯度。如果您只是需要计算一阶导数,请在上下文外调用`gradient()`函数,以避免这个警告和潜在的性能下降。例如,您可以这样写:
```
with tf.GradientTape(persistent=True) as tape:
# 计算损失函数
grads = tape.gradient(loss, model.trainable_variables)
del tape # 手动删除磁带
```
在上面的代码中,我们在上下文内计算了损失函数,但在上下文外调用了`gradient()`函数来计算梯度,并手动删除了磁带,以避免梯度操作被记录在磁带上。这样可以避免警告和潜在的性能下降。
阅读全文