如何用pytouch使用resnet101预训练模型进行图片树叶分类,
时间: 2024-03-20 10:44:42 浏览: 53
好的,你可以按照以下步骤使用PyTorch编写使用resnet101预训练模型进行图片树叶分类的代码:
1. 导入必要的库和模块:
```python
import torch
import torch.nn as nn
import torchvision.models as models
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
```
2. 定义数据预处理:
```python
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
```
3. 加载数据集:
```python
dataset = torchvision.datasets.ImageFolder(root='path/to/dataset', transform=transform)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
```
4. 加载预训练模型:
```python
model = models.resnet101(pretrained=True)
```
5. 修改模型的最后一层:
```python
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 176)
```
在这里,176是你数据集中的类别数。
6. 定义损失函数和优化器:
```python
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
```
7. 训练模型:
```python
num_epochs = 10
for epoch in range(num_epochs):
for images, labels in dataloader:
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
```
在这里,我们训练模型10个epoch。
8. 在测试集上进行评估:
```python
correct = 0
total = 0
with torch.no_grad():
for images, labels in testloader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the model on the test images: %d %%' % (100 * correct / total))
```
这些是使用PyTorch编写使用resnet101预训练模型进行图片树叶分类的基本步骤。你需要根据自己的具体情况进行相应的修改。
阅读全文