densenet加入inception同时加入动态卷积
时间: 2023-06-28 08:10:13 浏览: 117
DenseNet 和 Inception 是两种不同的深度学习模型架构,它们的设计思想和结构都有所区别。DenseNet 的主要特点是通过密集连接(Dense Connection)实现信息流动,而 Inception 则是通过多个不同尺寸的卷积核并行操作来提取特征。
如果要将 DenseNet 和 Inception 结合起来,可以考虑在 DenseNet 模型中引入 Inception 模块,例如使用 Inception-v4 模型中的 Inception-C 模块。这样可以在 DenseNet 的基础上进一步提升模型的表现。
至于动态卷积,它是一种可以自适应地选择卷积核大小和形状的卷积操作。动态卷积可以根据输入数据的特征自动调整卷积核的大小和形状,从而更好地适应不同的输入数据。因此,将动态卷积引入 DenseNet-Inception 模型中可以进一步提高模型的表现,并且使得模型更加灵活和适应性更强。
相关问题
densenet加入inception同时加入动态卷积你可以写深度学习代码吗
当然可以,以下是一个基于PyTorch的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class DynamicConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, padding=1, stride=1, dilation=1, groups=1, bias=True):
super().__init__()
self.kernel_size = kernel_size
self.padding = padding
self.stride = stride
self.dilation = dilation
self.groups = groups
self.weight = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size))
if bias:
self.bias = nn.Parameter(torch.randn(out_channels))
else:
self.register_parameter('bias', None)
def forward(self, x):
weight = self.weight
batch_size, channels, height, width = x.shape
# compute dynamic convolution weights
w = F.avg_pool2d(x, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding)
w = F.conv2d(w, weight, bias=None, stride=1, padding=0, dilation=self.dilation, groups=self.groups)
w = F.interpolate(w, size=(height, width), mode='nearest')
# compute dynamic convolution
x = F.conv2d(x, weight, bias=self.bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups)
x = x * w
return x
class DenseInceptionBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.branch1 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
self.branch2 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
self.branch3 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
DynamicConv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
self.branch4 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
DynamicConv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
out1 = self.branch1(x)
out2 = self.branch2(x)
out3 = self.branch3(x)
out4 = self.branch4(x)
out = torch.cat([out1, out2, out3, out4], dim=1)
return out
class DenseNetInception(nn.Module):
def __init__(self, num_classes=10):
super().__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu1 = nn.ReLU(inplace=True)
self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.block1 = DenseInceptionBlock(64, 64)
self.block2 = DenseInceptionBlock(256, 64)
self.block3 = DenseInceptionBlock(256, 64)
self.block4 = DenseInceptionBlock(256, 64)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(256, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.maxpool1(x)
x = self.block1(x)
x = self.block2(x)
x = self.block3(x)
x = self.block4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
这是一个基于DenseNet和Inception的深度学习模型,并且加入了动态卷积。`DynamicConv2d`是一个自定义的动态卷积层,基于传入的输入计算一个权重矩阵,然后将输入和权重相乘得到最终的输出。`DenseInceptionBlock`是一个由四个分支组成的模块,每个分支包括1个或2个卷积层和1个动态卷积层。`DenseNetInception`是一个由多个DenseInceptionBlock组成的网络,其中第一个卷积层和池化层与DenseNet相同。最后的全连接层输出预测标签。
densenet中加入inception模块同时使用动态卷积实现图像四分类代码
以下是使用PyTorch实现在DenseNet中加入Inception模块和使用动态卷积实现图像四分类的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class DynamicConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True):
super(DynamicConv2d, self).__init__()
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.bias = bias
self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, *kernel_size))
if bias:
self.bias = nn.Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(self.bias, -bound, bound)
def forward(self, x):
weight = F.pad(self.weight, (1, 1, 1, 1), mode='constant', value=0)
weight = F.avg_pool2d(weight, kernel_size=3, stride=1, padding=0)
weight = F.pad(weight, (1, 1, 1, 1), mode='constant', value=0)
b, c, h, w = x.size()
weight = weight.unfold(2, h + 2, self.stride).unfold(3, w + 2, self.stride)
weight = weight.transpose(4, 5).transpose(3, 4).transpose(2, 3).contiguous()
weight = weight.view(b, self.groups, -1, self.kernel_size[0], self.kernel_size[1], h // self.stride, w // self.stride)
weight = weight.transpose(1, 2).contiguous().view(-1, self.groups * self.kernel_size[0] * self.kernel_size[1])
x = F.conv2d(x, weight.view(-1, self.groups, self.kernel_size[0], self.kernel_size[1]), self.bias, self.stride, self.padding, self.dilation, self.groups)
return x
class Inception(nn.Module):
def __init__(self, in_channels, out_channels):
super(Inception, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels // 4, kernel_size=1)
self.conv2 = nn.Sequential(
nn.Conv2d(in_channels, out_channels // 8, kernel_size=1),
nn.ReLU(inplace=True),
DynamicConv2d(out_channels // 8, out_channels // 4, kernel_size=3, padding=1),
)
self.conv3 = nn.Sequential(
nn.Conv2d(in_channels, out_channels // 8, kernel_size=1),
nn.ReLU(inplace=True),
DynamicConv2d(out_channels // 8, out_channels // 4, kernel_size=5, padding=2),
)
self.conv4 = nn.Sequential(
nn.AvgPool2d(kernel_size=3, stride=1, padding=1),
nn.Conv2d(in_channels, out_channels // 4, kernel_size=1),
)
def forward(self, x):
out1 = self.conv1(x)
out2 = self.conv2(x)
out3 = self.conv3(x)
out4 = self.conv4(x)
out = torch.cat([out1, out2, out3, out4], dim=1)
return out
class BasicBlock(nn.Module):
def __init__(self, in_channels, growth_rate):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, growth_rate, kernel_size=1)
self.conv2 = nn.Sequential(
nn.Conv2d(growth_rate, 4 * growth_rate, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
)
def forward(self, x):
out1 = x
out2 = self.conv1(x)
out3 = self.conv2(out2)
out = torch.cat([out1, out3], dim=1)
return out
class DenseNet(nn.Module):
def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_classes=4):
super(DenseNet, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
)
self.block1 = self._make_block(64, growth_rate, block_config[0])
self.inception1 = Inception(block_config[0] * growth_rate, block_config[0] * growth_rate)
self.block2 = self._make_block(block_config[0] * growth_rate * 2, growth_rate, block_config[1])
self.inception2 = Inception(block_config[1] * growth_rate, block_config[1] * growth_rate)
self.block3 = self._make_block(block_config[1] * growth_rate * 2, growth_rate, block_config[2])
self.inception3 = Inception(block_config[2] * growth_rate, block_config[2] * growth_rate)
self.block4 = self._make_block(block_config[2] * growth_rate * 2, growth_rate, block_config[3])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(block_config[3] * growth_rate, num_classes)
def _make_block(self, in_channels, growth_rate, num_blocks):
layers = []
for i in range(num_blocks):
layers.append(BasicBlock(in_channels + i * growth_rate, growth_rate))
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv1(x)
out = self.block1(out)
out = self.inception1(out)
out = self.block2(out)
out = self.inception2(out)
out = self.block3(out)
out = self.inception3(out)
out = self.block4(out)
out = self.avgpool(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
```
在这个示例中,我们使用了以下模块:
- `DynamicConv2d`:动态卷积层,用于替代传统的静态卷积层,可以根据输入特征图的形状动态生成卷积核,减少模型参数量和计算量。
- `Inception`:Inception模块,由多个不同大小的卷积核组成,可以提取不同尺度的特征。
- `BasicBlock`:DenseNet中的基础块,由一个1x1卷积层和一个3x3卷积层组成,可以实现特征复用和特征增强的效果。
- `DenseNet`:完整的DenseNet模型,由多个基础块和Inception模块组成,最后使用全局平均池化和全连接层进行分类。
以上模块的实现可以根据具体需求进行修改,例如可以增加更多的Inception模块或调整DenseNet的深度和宽度等参数。
阅读全文