python编写EEG四分类CSP特征提取
时间: 2023-05-25 14:01:29 浏览: 203
A:
在Python中,我们可以使用MNE库来读取、处理和分析EEG数据。以下是一个使用CSP特征提取算法进行四分类的例子:
```python
import numpy as np
from sklearn.cross_validation import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from mne.decoding import CSP
# Load data
raw_data = ... # Load EEG data using MNE
labels = ... # Load labels for each sample
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(raw_data, labels, test_size=0.2, random_state=42)
# Define CSP algorithm
csp = CSP(n_components=4, reg='ledoit_wolf')
# Define LDA classifier
lda = LinearDiscriminantAnalysis()
# Create CSP + LDA pipeline
clf = Pipeline([('CSP', csp), ('LDA', lda)])
# Train classifier on training data
clf.fit(X_train, y_train)
# Test classifier on testing data
score = clf.score(X_test, y_test)
print('Classification accuracy:', score)
```
在这个例子中,我们首先使用MNE库加载EEG数据和标签,并将其拆分为训练和测试集。然后,我们定义了CSP算法和LDA分类器,并使用scikit-learn的Pipeline模块创建了一个CSP + LDA流水线。最后,我们在训练数据上拟合了分类器,并在测试数据上进行了测试,并输出了分类精度。
阅读全文