代码不完整
时间: 2023-07-27 14:05:59 浏览: 120
系统错误全解(系统错误代码大全)
非常抱歉,可能是因为代码太长了,超过了限制导致不完整。下面是完整的代码示例:
```
import torch
import torch.nn.functional as F
from torch_geometric.nn import GCNConv, VGAE
from torch_geometric.datasets import Planetoid
# 加载Cora数据集
dataset = Planetoid(root='/tmp/Cora', name='Cora')
data = dataset[0]
# 创建VGAE模型
class VGAEModel(torch.nn.Module):
def __init__(self):
super(VGAEModel, self).__init__()
self.conv1 = GCNConv(dataset.num_features, 16)
self.conv2 = GCNConv(16, dataset.num_classes)
self.vgae = VGAE(self.conv1, self.conv2)
def encode(self, x, edge_index):
return self.vgae.encode(x, edge_index)
def reparameterize(self, mu, logvar):
if self.training:
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return eps.mul(std).add(mu)
else:
return mu
def decode(self, z, edge_index):
return self.vgae.decode(z, edge_index)
def forward(self, x, edge_index):
z, mu, logvar = self.encode(x, edge_index)
z = self.reparameterize(mu, logvar)
return self.decode(z, edge_index), mu, logvar
model = VGAEModel()
# 训练模型
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
def train():
model.train()
optimizer.zero_grad()
recon, mu, logvar = model(data.x, data.edge_index)
loss = F.binary_cross_entropy(recon, data.adjacency_matrix.to_dense())
loss = loss + (1 / data.num_nodes) * (-0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()))
loss.backward()
optimizer.step()
for epoch in range(200):
train()
print('Epoch:', epoch, 'Loss:', loss.item())
# 在测试集上评估模型
model.eval()
z, _, _ = model.encode(data.x, data.edge_index)
pred = model.decode(z, data.edge_index)
# 可以使用重构误差或其他指标来评估模型的性能
```
阅读全文