conv1 = layers.Conv2D(3, (7,7), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs) 输入通道数怎么改
时间: 2023-12-18 07:05:40 浏览: 180
ResNet18的基本原理及tensorflow2.0实现
在这段代码中,`inputs` 是输入的数据张量,它的通道数由数据本身决定。如果你需要改变输入通道数,可以在 `inputs` 张量构建时进行修改。举个例子,如果你希望输入数据的通道数为 6,可以将代码修改为:
```python
inputs = layers.Input(shape=(height, width, 6))
conv1 = layers.Conv2D(3, (7,7), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs)
```
这里的 `layers.Input()` 函数用于创建一个输入数据张量,其中 `shape` 参数指定了输入数据的形状,包括高度、宽度和通道数。将 `shape` 参数中的通道数设置为 6,即可创建一个包含 6 个通道的输入数据张量。然后,将这个输入张量作为 `layers.Conv2D()` 函数的输入,即可创建一个包含 3 个卷积核、卷积核大小为 (7,7) 的卷积层,它的输入通道数为 6,输出通道数为 3。
阅读全文