def conv_block(inputs, filters): x = layers.BatchNormalization()(inputs) x = layers.Activation('relu')(x) x = layers.Conv2D(filters, 1, padding='same')(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.Conv2D(filters, 3, padding='same')(x) x = layers.Conv2D(filters, 1, padding='same')(x) return x def dense_block(inputs, filters, n_layers): x = inputs for i in range(n_layers): conv = conv_block(x, filters) x = layers.Concatenate()([x, conv]) return x def transition_block(inputs, compression): filters = int(inputs.shape[-1] * compression) x = layers.BatchNormalization()(inputs) x = layers.Activation('relu')(x) x = layers.Conv2D(filters, 1, padding='same')(x) x = layers.AveragePooling2D(2)(x) return x def Inception_block(inputs, filters): x1 = layers.Conv2D(filters, 1, padding='same', activation='relu')(inputs) x2 = layers.Conv2D(filters, 1, padding='same', activation='relu')(inputs) x2 = layers.Conv2D(filters, 3, padding='same', activation='relu')(x2) x3 = layers.Conv2D(filters, 1, padding='same', activation='relu')(inputs) x3 = layers.Conv2D(filters, 5, padding='same', activation='relu')(x3) x4 = layers.MaxPooling2D(3, strides=1, padding='same')(inputs) x4 = layers.Conv2D(filters, 1, padding='same', activation='relu')(x4) x = layers.Concatenate()([x1, x2, x3, x4]) return x inputs = keras.Input(shape=(224, 224, 3)) x = layers.Conv2D(64, 7, strides=2, padding='same')(inputs) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.MaxPooling2D(3, strides=2, padding='same')(x) x = dense_block(x, 32, 6) x = transition_block(x, 0.5) x = Inception_block(x, 64) x = dense_block(x, 32, 12) x = transition_block(x, 0.5) x = Inception_block(x, 128) x = dense_block(x, 32, 48) x = transition_block(x, 0.5) x = Inception_block(x, 256) x = layers.GlobalAveragePooling2D()(x) outputs = layers.Dense(10, activation='softmax')(x) model = keras.Model(inputs, outputs)这串代码有问题
时间: 2023-11-10 08:06:18 浏览: 129
这段代码并没有明显的语法错误,但是其中使用的函数和模块并未导入。需要在代码文件开头导入所需的模块和函数,例如:
```
from tensorflow import keras
from tensorflow.keras import layers
def conv_block(inputs, filters):
x = layers.BatchNormalization()(inputs)
x = layers.Activation('relu')(x)
x = layers.Conv2D(filters, 1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(filters, 3, padding='same')(x)
x = layers.Conv2D(filters, 1, padding='same')(x)
return x
def dense_block(inputs, filters, n_layers):
x = inputs
for i in range(n_layers):
conv = conv_block(x, filters)
x = layers.Concatenate()([x, conv])
return x
def transition_block(inputs, compression):
filters = int(inputs.shape[-1] * compression)
x = layers.BatchNormalization()(inputs)
x = layers.Activation('relu')(x)
x = layers.Conv2D(filters, 1, padding='same')(x)
x = layers.AveragePooling2D(2)(x)
return x
def Inception_block(inputs, filters):
x1 = layers.Conv2D(filters, 1, padding='same', activation='relu')(inputs)
x2 = layers.Conv2D(filters, 1, padding='same', activation='relu')(inputs)
x2 = layers.Conv2D(filters, 3, padding='same', activation='relu')(x2)
x3 = layers.Conv2D(filters, 1, padding='same', activation='relu')(inputs)
x3 = layers.Conv2D(filters, 5, padding='same', activation='relu')(x3)
x4 = layers.MaxPooling2D(3, strides=1, padding='same')(inputs)
x4 = layers.Conv2D(filters, 1, padding='same', activation='relu')(x4)
x = layers.Concatenate()([x1, x2, x3, x4])
return x
inputs = keras.Input(shape=(224, 224, 3))
x = layers.Conv2D(64, 7, strides=2, padding='same')(inputs)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.MaxPooling2D(3, strides=2, padding='same')(x)
x = dense_block(x, 32, 6)
x = transition_block(x, 0.5)
x = Inception_block(x, 64)
x = dense_block(x, 32, 12)
x = transition_block(x, 0.5)
x = Inception_block(x, 128)
x = dense_block(x, 32, 48)
x = transition_block(x, 0.5)
x = Inception_block(x, 256)
x = layers.GlobalAveragePooling2D()(x)
outputs = layers.Dense(10, activation='softmax')(x)
model = keras.Model(inputs, outputs)
```
阅读全文