python图像提取目标区域

时间: 2023-09-05 20:13:46 浏览: 23
你可以使用Python中的OpenCV库来提取图像中的目标区域。下面是一个简单的例子: ```python import cv2 # 读取图像 img = cv2.imread('image.jpg') # 设置感兴趣区域(ROI),这里是图像的中心部分 x, y, w, h = img.shape[1] // 4, img.shape[0] // 4, img.shape[1] // 2, img.shape[0] // 2 roi = img[y:y+h, x:x+w] # 显示原始图像和提取的区域 cv2.imshow('Original Image', img) cv2.imshow('ROI', roi) cv2.waitKey(0) cv2.destroyAllWindows() ``` 在上面的例子中,我们首先读取了一张图像。然后,我们设置了感兴趣区域(ROI),这里是图像的中心部分。最后,我们使用`cv2.imshow()`函数显示原始图像和提取的区域。你可以根据自己的需求修改代码来提取不同的目标区域。
相关问题

python 提取图像特征

在 Python 中,常用的图像特征提取方法包括以下几种: 1. 颜色直方图:统计图像中每个像素在不同颜色空间的分布情况,可以用来描述图像的颜色特征。 2. SIFT 特征:SIFT (Scale-Invariant Feature Transform) 是一种局部不变特征检测算法,可以检测出图像中的关键点,并提取出这些关键点的特征。 3. HOG 特征:HOG (Histogram of Oriented Gradients) 是一种基于梯度的特征描述方法,可以用来描述图像中的形状特征。 4. Haar 特征:Haar 特征是一种基于区域的特征描述方法,可用于目标检测和人脸识别等任务。 5. CNN 特征:卷积神经网络 (Convolutional Neural Network, CNN) 可以自动提取图像特征,通常用于图像分类和目标检测等任务。 这些方法各有特点,具体选择哪种方法取决于应用场景和需求。

python火焰目标区域检测

Python火焰目标区域检测是一种基于计算机视觉技术的方法,用于检测图像或视频中的火焰目标。这种技术可以应用于火灾预警、视频监控等领域。下面我将简要介绍Python火焰目标区域检测的实现步骤。 首先,我们需要获取输入图像或视频,并将其转换为灰度图像。接下来,我们可以使用Python中的OpenCV库来进行图像处理和分析。 在火焰目标区域检测中,我们可以采用背景减法算法。首先,我们需要提取出图像的背景。可以通过使用平均法或高斯混合模型等方法来建立图像序列的背景模型。 然后,我们需要对每一帧的图像进行背景减法处理,将图像减去背景模型,得到一个差分图像。接着,我们可以进行二值化处理,将差分图像转换为黑白二值图像。 接下来,我们可以通过对二值图像进行形态学处理,如腐蚀和膨胀操作,来去除噪声和填充小区域。 最后,我们可以使用连通区域提取方法,找到二值图像中的火焰目标区域。可以使用OpenCV中的findContours函数来实现这一步骤。 在找到火焰目标区域之后,我们可以对其进行进一步的分析和处理,如计算火焰的面积、颜色等信息,或者进行火焰预警和报警。 总而言之,Python火焰目标区域检测是一种基于图像处理和计算机视觉技术的方法,通过背景减法、二值化、形态学处理和连通区域提取等步骤,可以实现对火焰目标区域的快速检测和提取。这种技术可以为火灾预警和视频监控等领域提供有效的解决方案。

相关推荐

Python图像追踪是一种利用Python编程语言和相关库对图像进行处理和追踪的技术。通过分析图像中的物体或特定区域,Python图像追踪可以实现对其运动或变化的监测和跟踪。 在Python中,有多种库和工具可以用于图像追踪。其中一个主要的库是OpenCV(Open Source Computer Vision Library),它提供了许多图像处理和分析的功能。通过OpenCV,可以实现图像捕获、预处理、特征提取和物体匹配等功能,从而实现图像追踪。 Python图像追踪的主要步骤包括: 1. 图像采集和准备:使用Python的摄像头或从文件中读取图像作为输入。对输入图像进行预处理,如调整大小、灰度化等。 2. 特征提取:使用计算机视觉算法对图像进行特征提取。这些特征可以是物体的边缘、颜色、纹理等。 3. 物体匹配:使用特定的算法或模型将当前帧中的特征与之前帧中的特征进行匹配。这可以通过计算特征的相似度或使用机器学习算法来实现。 4. 目标追踪:根据匹配结果,确定目标的位置和运动。可以使用各种技术,如卡尔曼滤波、神经网络等,对目标进行跟踪和预测。 5. 输出结果:将追踪结果以图形或文本形式输出,以便进一步分析或显示。 Python图像追踪广泛应用于许多领域,如视频监控、自动驾驶、动作捕捉和虚拟现实等。它可以帮助人们实时获取和分析图像数据,并根据需要做出相应的决策和操作。同时,Python的易用性和丰富的库资源使得开发人员可以更加高效地实现图像追踪的算法和应用。
Python的OpenCV库是一个强大的图像处理工具库,可以用它来提取图片验证码的内容。下面是一种常见的提取图片验证码内容的方法: 首先,我们需要将待处理的图片加载到Python中。可以使用OpenCV的imread()函数来读取图片,然后使用imshow()函数来显示图片。 接下来,我们需要对图片进行预处理。在处理验证码图片时,常见的预处理步骤包括灰度化、二值化和去噪。可以使用OpenCV的cvtColor()函数将彩色图片转换成灰度图像,然后使用threshold()函数将图像进行二值化。如果图片存在噪声,可以使用OpenCV的medianBlur()函数或GaussianBlur()函数进行去噪。 然后,我们可以对预处理后的图像进行目标区域的定位。验证码通常位于图片的特定位置,可以通过OpenCV的图像分割和轮廓检测来找到验证码的位置。使用OpenCV的findContours()函数可以检测出图像中的所有轮廓,然后可以通过计算轮廓的边界框和面积等特征来筛选出验证码的轮廓。 最后,我们可以利用机器学习或模式识别的方法对提取出的验证码进行识别。可以使用基于模板匹配的方法,将提取出的验证码和事先准备好的验证码模板进行比较,找到最匹配的验证码内容。也可以使用机器学习算法,如支持向量机(SVM)、卷积神经网络(CNN)等,通过训练模型来识别验证码。 综上所述,使用Python的OpenCV库可以方便地提取图片验证码内容。
Python连通域提取是指在图像处理中使用Python编程语言来识别和分离图像中的连通域。连通域是指在一幅图像中,像素值相同且相互连接的一组像素点集合。 在Python中,可以使用OpenCV库来进行图像处理。OpenCV提供了一系列的函数和方法,可以轻松地实现连通域提取的功能。 首先,我们需要读取并加载图像。可以使用OpenCV的cv2.imread()函数来完成,路径作为参数传入。 接下来,我们可以将图像转换为灰度图像,因为在大多数情况下,连通域提取是在灰度图像上进行的。可以使用cv2.cvtColor()函数来将图像从BGR格式转换为灰度格式。 然后,我们可以使用OpenCV的cv2.threshold()函数将图像进行二值化处理。二值化将图像转换为只有两个像素值的图像,通常使用黑色和白色代表不同的区域。这样可以更容易地进行连通域提取。 接下来,可以使用cv2.connectedComponents()函数来标记和提取图像中的连通域。这个函数返回一个标记图像和连通域的数量。我们可以通过遍历标记图像来获取每个连通域的位置和大小。 最后,可以使用OpenCV的绘图函数来在原始图像上绘制提取得到的连通域,以便可视化和分析。可以使用cv2.drawContours()函数绘制边界。 在以上过程中,需要注意对图像进行适当的预处理,如平滑、滤波、二值化参数的选择等,以获得较好的连通域提取结果。 Python连通域提取是图像处理领域的常用技术,可以应用于许多领域,如医学图像分析、目标检测等。通过使用Python编程语言和OpenCV库,可以快速、简单地实现连通域提取,并获得满意的结果。
### 回答1: Python是一门强大的编程语言,其在图像处理领域也拥有出色的表现。要分割图像中人物,可以利用Python的图像处理库进行实现。 首先,需要加载图像并进行预处理,例如调整图像大小、转换为灰度图像等。接着,可以使用Python中的机器学习或深度学习算法对图像进行分割。其中,常用的方法包括基于区域的分割、基于阈值的分割和基于边缘的分割。在这些方法中,使用卷积神经网络(CNN)进行分割可以获得更好的分割效果。 在使用CNN进行分割时,可以选择现有的预训练模型,例如VGG16、ResNet等,或者自己训练一个模型。模型训练的数据可以来自于现有的数据集,例如COCO、PASCAL VOC等,也可以自己采集和标注数据。在训练模型时,需要调整模型的参数和超参数,以获得更好的分割效果。 最后,可以将分割结果进行可视化,例如将分割出的人物提取出来并覆盖到原图上,以便后续的应用和分析。 总之,使用Python进行图像分割需要掌握图像处理及机器学习或深度学习的相关知识,同时需要选择合适的算法和模型,对分割结果进行优化和可视化,才能达到好的分割效果。 ### 回答2: Python是一种强大的编程语言,可以通过它来分割图像中的人物。图像分割是一种常见的图像处理任务,它的目标是将图像分成不同的区域,每个区域具有相似的特征。 在Python中,我们可以使用OpenCV库来实现分割图像中的人物。OpenCV是一种用于计算机视觉和图像处理任务的库,并且它可以处理各种格式的图像,包括JPEG、PNG和BMP等格式。 要实现图像人物分割,我们可以使用OpenCV提供的图像分割算法。具体来说,我们可以使用GrabCut算法来分割图像中的前景和背景。这个算法可以分离出一个属于人物的前景区域,然后将它与背景分割开来。 我们可以通过以下步骤来实现分割图像中的人物: 1. 读取图像文件并加载到Python中; 2. 初始化GrabCut算法,并确定所有像素的标签(前景、背景或未知); 3. 使用GrabCut算法对图像进行迭代,直到达到收敛条件; 4. 将分割出的前景区域提取出来,即可得到分割图像中的人物区域。 在实际应用中,我们还需要根据不同的图像和应用场景来选择适当的参数和算法,以获得最好的分割效果。 总之,Python是一种非常强大的编程语言,可以用来实现各种图像处理任务,包括图像人物分割。有了Python和OpenCV库的支持,我们可以轻松地实现图像处理任务,提高图像分割的准确性和效率。 ### 回答3: Python分割图像中人物是一项使用计算机视觉技术实现的任务,其目的是将一张复杂的图像中的人物部分从其他部分分离出来。这个任务可以被广泛应用于图像处理、虚拟现实、机器人视觉等领域。 对于此任务,我们可以采用一些现有的算法和工具。其中最常用的技术则是基于深度学习的图像分割方法,其原理是通过训练一个卷积神经网络,使其能够识别图像中的不同对象,从而能够在新的输入图像中自动分割出人物区域。 另一种方法是采用传统的图像处理方法,如腐蚀膨胀法、区域生长法等,这些方法较为简单,但是其对图像质量、光照等因素的要求较高。 此外,为了完成图片分割,我们需要一个Python的图像处理库,比如OpenCV。OpenCV是一个先进的计算机视觉库,它提供了很多用于图像分割、处理和分析的函数和工具。 总的来说,Python分割图像中人物这个任务并不是一项非常难以完成的工作,只要掌握相关的算法和工具,领域内的专业人员可以轻松地完成这项任务。
图像分割是数字图像处理中的一项重要任务,它的目标是将图像分成若干个具有独立意义的区域。在Python中,可以使用不同的方法进行图像分割。 引用\[1\]中的代码展示了一种基于阈值的图像分割方法。该方法通过选择最佳阈值来将图像分成两个类别。首先,计算两个类别的平均灰度值,然后根据阈值将像素分配到不同的类别中。最后,根据分配结果生成分割后的图像。 引用\[2\]中的代码展示了另一种图像分割方法,使用了卷积操作。通过定义不同的卷积核,可以提取图像中的不同特征。在这个例子中,使用了两个卷积核分别进行滤波操作,得到两个滤波后的图像。这两个图像可以看作是图像的不同特征表示,可以用于图像分割。 引用\[3\]中的代码展示了使用Sobel算子进行图像分割的方法。Sobel算子是一种常用的边缘检测算子,可以提取图像中的边缘信息。通过对图像进行Sobel算子操作,可以得到边缘图像,从而实现图像分割。 以上是三种常见的图像分割方法的示例代码,你可以根据自己的需求选择合适的方法进行图像分割。 #### 引用[.reference_title] - *1* [数字图像处理实验(四,图像分割)(python实现)](https://blog.csdn.net/weixin_45681381/article/details/125146865)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [数字图像处理(一)图像分割+python](https://blog.csdn.net/packdge_black/article/details/107228662)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
### 回答1: snake图像分割是一种常用的计算机视觉任务,其目标是将图像中的蛇形目标进行分割。在Python中,我们可以使用各种库和算法来实现snake图像分割。 首先,我们可以使用OpenCV库来加载和处理图像。通过使用OpenCV的cv2.imread函数,我们可以将图像加载到Python中,并将其转换为NumPy数组以进行进一步处理。 接下来,我们可以使用Snake算法来进行图像分割。Snake算法,也被称为活动轮廓模型,是一种基于能量最小化的边界提取算法。该算法通过对一条闭合曲线进行迭代优化,以找到最佳的边界。 在Python中,我们可以使用scikit-image库中的active_contour函数来实现Snake算法。该函数可以根据输入的图像和初始化的曲线,通过迭代来优化曲线,并最终得到分割结果。具体使用方式为先对图像进行预处理,如灰度化、平滑等,然后通过active_contour函数传入参数来运行Snake算法。 最后,我们可以使用matplotlib库来可视化分割结果。通过使用matplotlib的imshow函数,我们可以将分割后的图像显示出来,以便可视化和进一步分析。 综上所述,通过使用Python中的OpenCV、scikit-image和matplotlib库,我们可以实现snake图像分割。具体步骤为加载和处理图像、使用Snake算法进行分割,最后可视化分割结果。 ### 回答2: 图像分割是指将一幅图像分割成多个区域,并对每个区域进行独立处理的过程。而"snake"(也称为活动轮廓模型)是一种常用的图像分割算法,它通过自动获取图像中物体边界的方式实现分割。 在Python中,我们可以使用scikit-image库来实现snake图像分割。首先,我们需要导入相关的库: import numpy as np import matplotlib.pyplot as plt from skimage.segmentation import active_contour 接下来,我们可以加载要分割的图像并将其转换为灰度图像: # 加载图像 image = plt.imread('image.jpg') # 转换为灰度图像 gray_image = np.mean(image, axis=2) 然后,我们可以定义初始的snake轮廓,并通过调整参数来优化轮廓的形状: # 定义初始轮廓 s = np.linspace(0, 2*np.pi, 100) init_contour = np.array([50 + 20*np.cos(s), 50 + 20*np.sin(s)]).T # 优化轮廓形状 snake = active_contour(gray_image, init_contour, alpha=0.1, beta=0.01, gamma=0.001) 最后,我们可以将原始图像和分割后的轮廓进行可视化: # 可视化结果 fig, ax = plt.subplots() ax.imshow(image) # 绘制分割轮廓 ax.plot(snake[:, 0], snake[:, 1], '-r', lw=1) ax.axis('off') plt.show() 以上就是用Python进行snake图像分割的简单实现。需要注意的是,实际的应用中可能需要调整参数和做一些预处理来获得更好的分割效果。
### 回答1: 我可以回答这个问题。Opencv 是一个开源计算机视觉库,它可以使用 Python 进行编程。目标跟踪是指在视频或图像中跟踪一个特定的目标,例如人或车辆。在 Opencv 中,可以使用不同的算法来实现目标跟踪,例如卡尔曼滤波器、背景减法和光流法等。 ### 回答2: OpenCV是一个用于计算机视觉任务的开源库,在Python中也有对应的接口。目标跟踪是计算机视觉的一个重要任务,它可以用于追踪视频中的特定对象。 在OpenCV中实现目标跟踪可以使用多种技术,其中一种常用的方法是基于颜色的目标跟踪。这种方法通过在图像中检测特定颜色的区域,然后跟踪这些区域来实现目标的追踪。首先,我们需要定义目标所在的颜色范围,可以通过调整颜色阈值来选择所需的目标颜色。然后,通过将图像转换为HSV色彩空间,并应用颜色阈值来创建一个二值图像。接下来,使用形态学操作,如腐蚀和膨胀来去除噪声并平滑目标区域。最后,利用轮廓检测函数来检测目标的轮廓,并进行跟踪。 除了基于颜色的目标跟踪,还有一些其他方法可以实现目标跟踪,如基于特征的目标跟踪。基于特征的目标跟踪通过提取目标的特征点,如边缘、角点或SIFT特征点,并使用这些特征点来跟踪目标。这种方法通常更加鲁棒和准确。 总之,使用OpenCV和Python可以实现目标跟踪任务。根据具体的需求和场景,可以选择合适的跟踪方法,如基于颜色的跟踪或基于特征的跟踪。这些方法可以帮助我们在图像或视频中准确地追踪目标,并应用于各种计算机视觉应用中。 ### 回答3: 目标跟随是指使用OpenCV和Python对特定目标进行实时跟踪和定位的过程。以下是一种简单的实现方法: 1. 导入必要的模块: python import cv2 import numpy as np 2. 加载目标图像和视频流: python target_img = cv2.imread("target.jpg") # 目标图像 video_stream = cv2.VideoCapture(0) # 视频流,0表示默认摄像头 3. 使用图像处理算法初始化目标: python # 将目标图像转换为灰度图 target_gray = cv2.cvtColor(target_img, cv2.COLOR_BGR2GRAY) # 使用特征匹配算法(如ORB)检测关键点和描述符 orb = cv2.ORB_create() target_keypoints, target_descriptors = orb.detectAndCompute(target_gray, None) 4. 在视频流中实时跟踪目标: python while True: ret, frame = video_stream.read() # 读取视频流的帧 # 将帧图像转换为灰度图 frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 使用特征匹配算法检测帧图像的关键点和描述符 frame_keypoints, frame_descriptors = orb.detectAndCompute(frame_gray, None) # 使用暴力匹配算法(如Brute-Force)找到最佳匹配 bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) matches = bf.match(target_descriptors, frame_descriptors) # 根据匹配结果绘制框选目标区域 if len(matches) > 10: # 设置阈值,匹配点数超过阈值才认为目标存在 src_pts = np.float32([target_keypoints[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2) dst_pts = np.float32([frame_keypoints[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2) # 使用RANSAC算法估计变换矩阵 M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) # 在帧图像上绘制目标区域 h, w = target_img.shape[:2] corners = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2) dst_corners = cv2.perspectiveTransform(corners, M) frame = cv2.polylines(frame, [np.int32(dst_corners)], True, (0, 255, 0), 3) # 显示结果 cv2.imshow('Target Tracking', frame) if cv2.waitKey(1) == ord('q'): # 按下Q键退出 break # 释放资源 video_stream.release() cv2.destroyAllWindows() 这是一个简单的目标跟踪示例。可以根据具体需要调整算法参数和阈值来提高目标跟踪的准确性。

最新推荐

ChatGPT技术在情感计算中的应用.docx

ChatGPT技术在情感计算中的应用

用户最值输出JAVA代码

题目描述: 接收用户输入的3个整数,并将它们的最大值作为结果输出

基于at89c51单片机的-智能开关设计毕业论文设计.doc

基于at89c51单片机的-智能开关设计毕业论文设计.doc

"蒙彼利埃大学与CNRS联合开发细胞内穿透载体用于靶向catphepsin D抑制剂"

由蒙彼利埃大学提供用于靶向catphepsin D抑制剂的细胞内穿透载体的开发在和CNRS研究单位- UMR 5247(马克斯·穆塞隆生物分子研究专长:分子工程由Clément Sanchez提供于2016年5月26日在评审团面前进行了辩护让·吉隆波尔多大学ARNA实验室CNRS- INSERM教授报告员塞巴斯蒂安·帕波特教授,CNRS-普瓦捷大学普瓦捷介质和材料化学研究所报告员帕斯卡尔·拉斯特洛教授,CNRS-审查员让·马丁内斯蒙彼利埃大学Max Mousseron生物分子研究所CNRS教授审查员文森特·利索夫斯基蒙彼利埃大学Max Mousseron生物分子研究所CNRS教授论文主任让-弗朗索瓦·赫尔南德斯CNRS研究总监-蒙彼利埃大学Max Mousseron生物分子研究论文共同主任由蒙彼利埃大学提供用于靶向catphepsin D抑制剂的细胞内穿透载体的开发在和CNRS研究单位- UMR 5247(马克斯·穆塞隆生物分子研究专长:分子工程由Clément Sanchez提供�

设计一个程序有一个字符串包含n个字符 写一个函数 将此字符串中从第m个字符开始的全部字符复制成为另一个字符串 用指针c语言

以下是用指针实现将字符串中从第m个字符开始的全部字符复制成为另一个字符串的C语言程序: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> void copyString(char *a, char *b, int n, int m); int main() { int n, m; char *a, *b; printf("请输入字符串长度n:"); scanf("%d", &n); a = (char*)malloc(n * sizeof(char)); b =

基于C#多机联合绘图软件的实现-毕业设计论文.doc

基于C#多机联合绘图软件的实现-毕业设计论文.doc

4G车载网络中无线电资源的智能管理

4G车载网络中无线电资源的智能管理汽车网络从4G到5G的5G智能无线电资源管理巴黎萨克雷大学博士论文第580号博士学院博士专业:网络、信息与通信研究单位:巴黎萨克雷大学,UVSQ,LI PARAD,78180,法国伊夫林省圣昆廷参考:凡尔赛大学-伊夫林省圣昆廷论文于11月30日在巴黎萨克雷发表并答辩2021年,由玛丽亚姆·阿卢奇·马迪陪审团组成Pascal Lorenz总裁上阿尔萨斯大学大学教授Mohamed Yacine Ghamri-Doudane拉罗谢尔大学报告员和审查员教授Rami Langar报告员和审查员马恩河谷大学Oyunchimeg SHAGDARVEDECOM研发(HDR)团队负责人审查员论文方向Samir TOHME博士生导师巴黎萨克雷大学名誉教授UVSQ/LI- PARADKALLEL KHEMIRI共同监督巴黎萨克雷UVSQ/大卫Guy Pujolle受邀索邦大学Tara Yahiya邀请巴黎萨克雷大学/LISN高级讲师(HDR)博士论文NNT:2021UPASG061谢谢你首先,我要感谢我的论文导师M.萨米�

mysql建表是的约束

在MySQL中,可以通过约束来保证表中数据的完整性和一致性。常见的约束有主键约束、唯一约束、非空约束和外键约束等。下面是MySQL建表时的约束介绍: 1. 主键约束:主键是一种特殊的唯一约束,它能够唯一确定一张表中的一条记录。在MySQL中,可以通过以下两种方式添加主键约束: ①在创建表时添加主键约束: ```mysql CREATE TABLE user ( id INT PRIMARY KEY, # 添加主键约束 name VARCHAR(20), age INT ); ``` ②在创建表后添加主键约束: ```mysql ALTER TABLE use

XX畜牧有限公司信息化项目实施方案.doc

XX畜牧有限公司信息化项目实施方案.doc

DOCT或AT:工程与计算机科学博士学位的域特定语言解决物联网系统的假数据注入攻击

这是由DOCT或AT从E't公关E'P ARE'在弗朗什-孔德E'大学第37章第一次见面工程与微技术科学计算机科学博士学位[美]马修·B·里兰德著在工业环境中使用域特定语言解决物联网系统中的假数据注入攻击在Conte e xte indust r iel中使用e'di '语言解决通过向物联网系统注入虚假捐赠进行的攻击2021年5月28日,在贝桑举行的评审团会议上:BOUQUETFABRICEProfesseuraThe'se总监GUIOT YOHann来自Flowbird集团的审查员LETRAONYVESProa'Uni v ersiteLEGEARDBRUNOProfesseura'PARISSISIOANNISProfesseura'Uni v ersit e' de Greno b le AlpesNX X X一个已知的基因首先,我想感谢我的直接和我的心的E 谢谢也是一个所有成员GeLeaD和SARCoS团队,让我有在一个大的设备中享受研究的乐趣。我感谢YvesLeTraon和IoanisPa rissi s,他们同意重读这篇文章,并成为它的作者。我感谢B runoLegeard和YohannGuiot在本文件的辩护期间接受并成为xaminators。感谢