pytorch写一个lstm的model
时间: 2023-11-22 07:39:14 浏览: 63
python(pytorch)编写简单lstm模型
好的,可以使用以下代码编写一个简单的LSTM模型:
```
import torch
import torch.nn as nn
class LSTMModel(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, batch_first=True):
super(LSTMModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=batch_first)
self.fc = nn.Linear(hidden_size, 1)
def forward(self, x):
# Initialize hidden state with zeros
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).requires_grad_()
# Initialize cell state with zeros
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).requires_grad_()
# Initialize hidden state and cell state
out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))
# Decode the hidden state of the last time step
out = out[:, -1, :]
out = self.fc(out)
return out
```
其中,`input_size`是输入的特征维度,`hidden_size`是LSTM的隐藏状态维度,`num_layers`是LSTM的层数。需要注意的是,LSTM的输入数据形状应该是`(batch_size, sequence_length, input_size)`,输出数据形状是`(batch_size, 1)`,因此在`forward`函数中需要对最后一个时间步的输出进行处理。
阅读全文