迎风格式求解一阶线性平流方程
时间: 2023-07-17 13:53:54 浏览: 161
一阶线性平流方程的一般形式为:
$$\frac{\partial u}{\partial t}+a\frac{\partial u}{\partial x}=0$$
其中,$u(x,t)$ 为待求函数,$a$ 为常数。为了求解该方程,可以采用迎风格式进行数值求解。
假设网格点 $(i,j)$ 上的函数值为 $u_{i,j}$,则迎风格式的离散形式为:
$$\frac{u_{i,j+1}-u_{i,j}}{\Delta t}+a\frac{u_{i,j}-u_{i-1,j}}{\Delta x}\leq 0$$
其中,$\Delta t$ 和 $\Delta x$ 分别为时间步长和空间步长。上式可以变形为:
$$u_{i,j+1}=u_{i,j}-a\frac{\Delta t}{\Delta x}(u_{i,j}-u_{i-1,j})$$
根据上式,可以从已知的初始条件 $u_{i,0}$ 开始逐步迭代求解,得到时间步长为 $n\Delta t$ 时空间上的函数值 $u_{i,n}$。
相关问题
迎风格式计算一维线性平流方程数值解
一维线性平流方程的一般形式为:
$$\frac{\partial u}{\partial t} + a\frac{\partial u}{\partial x} = 0$$
其中,$u$ 是待求函数,$a$ 是常数,表示平流速度。为了求解该方程的数值解,我们采用迎风格式。
迎风格式的离散形式为:
$$\frac{u_i^{n+1}-u_i^n}{\Delta t} + a\frac{u_i^n-u_{i-1}^n}{\Delta x} \leq 0$$
其中,$u_i^n$ 表示 $u(x_i,t_n)$ 的近似值,$\Delta t$ 和 $\Delta x$ 分别表示时间步长和空间步长。上式中的不等式表示采用迎风格式时,数值解是稳定的。
将上式变形得到:
$$u_i^{n+1}=u_i^n-a\frac{\Delta t}{\Delta x}(u_i^n-u_{i-1}^n)$$
这是迎风格式的迭代公式,用该公式可以递推求解 $u(x_i,t_{n+1})$ 的近似值。初始条件 $u(x,0)$ 可以通过插值得到,边界条件需要根据具体情况设定。
用python程序语言使用迎风格式求一维线性平流方程的数值解和解析解
一维线性平流方程的数值解和解析解如下:
数值解:
```python
import numpy as np
import matplotlib.pyplot as plt
# 定义问题参数
c = 1.0 # 平流速度
L = 1.0 # 区域长度
T = 1.0 # 模拟时间
nx = 101 # 空间网格数
nt = 1000 # 时间步数
dx = L / (nx - 1) # 空间步长
dt = T / nt # 时间步长
x = np.linspace(0, L, nx) # 空间网格点
# 初始化数值解和初始条件
u = np.zeros(nx)
u0 = np.sin(np.pi * x) + 0.5 * np.sin(2 * np.pi * x)
u[1:-1] = u0[1:-1]
# 数值求解
for n in range(nt):
un = u.copy()
for i in range(1, nx - 1):
u[i] = un[i] - c * dt / dx * (un[i] - un[i - 1])
# 绘图
plt.plot(x, u, label='Numerical')
plt.plot(x, u0, label='Analytical')
plt.legend()
plt.show()
```
解析解:
```python
import numpy as np
import matplotlib.pyplot as plt
# 定义问题参数
c = 1.0 # 平流速度
L = 1.0 # 区域长度
T = 1.0 # 模拟时间
nx = 101 # 空间网格数
dx = L / (nx - 1) # 空间步长
x = np.linspace(0, L, nx) # 空间网格点
# 定义解析解
def u_exact(x, t):
return np.sin(np.pi * (x - c * t)) + 0.5 * np.sin(2 * np.pi * (x - c * t))
# 初始化解析解和初始条件
u0 = u_exact(x, 0.0)
# 绘图
plt.plot(x, u_exact(x, T), label='Analytical')
plt.plot(x, u0, label='Initial')
plt.legend()
plt.show()
```
阅读全文