趋优反向学习差分进化算法matlab
时间: 2023-09-09 14:09:55 浏览: 113
matlab下基于改进的差分进化算法优化神经网络
5星 · 资源好评率100%
趋优反向学习差分进化算法(Differential Evolution with Reverse Learning, DERL)是一种用于连续优化问题的进化算法。相比于普通的差分进化算法,DERL引入了反向学习技术,可以更快地收敛到全局最优解。Matlab是一种常用的数值计算软件,可以方便地实现DERL算法。
以下是DERL算法的Matlab代码示例:
```matlab
function [best_sol, best_fit] = DERL(fobj, dim, lb, ub, maxiters, N, F, CR, alpha, beta)
% Differential Evolution with Reverse Learning (DERL) algorithm
% Initialize population
pop = repmat(lb, N, 1) + rand(N, dim) .* repmat(ub-lb, N, 1);
fitness = feval(fobj, pop');
best_fit = min(fitness);
best_sol = pop(find(fitness == best_fit, 1), :);
% Main loop
for t = 1:maxiters
for i = 1:N
% Generate three random individuals
r = randperm(N, 3);
x1 = pop(r(1), :);
x2 = pop(r(2), :);
x3 = pop(r(3), :);
% Generate trial vector
v = x1 + F*(x2 - x3);
v = max(v, lb);
v = min(v, ub);
% Mutation and crossover
jrand = randi(dim);
for j = 1:dim
if rand() < CR || j == jrand
u(j) = v(j);
else
u(j) = pop(i,j);
end
end
% Evaluate fitness of trial vector
f = feval(fobj, u');
if f <= fitness(i)
pop(i,:) = u;
fitness(i) = f;
end
% Reverse learning
if i == 1 || fitness(i) < fitness(i-1)
alpha(i) = beta*alpha(i) + (1-beta)*1;
else
alpha(i) = beta*alpha(i) + (1-beta)*0;
end
end
% Update best solution
[fmin, idx] = min(fitness);
if fmin < best_fit
best_fit = fmin;
best_sol = pop(idx, :);
end
% Update F and CR
F = 0.5 + 0.5*(2*rand() - 1)*sum(alpha)/N;
CR = 0.1 + 0.9*rand();
end
end
```
其中,`fobj`是目标函数,`dim`是问题的维度,`lb`和`ub`分别是每个维度的下限和上限,`maxiters`是最大迭代次数,`N`是种群大小,`F`和`CR`分别是差分进化算法的缩放因子和交叉概率,`alpha`和`beta`分别是反向学习的权重和衰减因子。该函数的输出是最优解和最优函数值。
需要注意的是,DERL算法的参数调节十分重要,不同的问题可能需要不同的参数设置才能取得最好的结果。因此,在使用DERL算法时,需要进行仔细的参数调节和实验验证。
阅读全文