deepctr中DIN模型参数use_negsampling=True

时间: 2024-06-06 11:11:41 浏览: 13
在DeepCTR中,DIN模型参数use_negsampling=True表示使用负采样技术。在DIN中,除了用户历史行为序列中的正样本之外,还需要使用负样本进行训练。负样本是指用户没有点击或购买的物品,通过对负样本的训练可以提高模型的泛化能力和抗干扰能力。在DIN中,使用负采样技术可以有效地减少训练时间和内存占用,同时还可以提高模型的性能。
相关问题

将下面的verilog文件改成VHDL文件“ module Time_sample( input i_clk , input i_rst , input i_ADC_clk , input [9:0] i_ADC , output o_ADC_valid , output[9:0] o_ADC ); parameter SAMPLE_TIME = 2000000000 ; parameter CLK_TIME = 20 ; parameter SIMPLE_CNT_NUM = SAMPLE_TIME/CLK_TIME ; wire [9:0] w_sync_ADC_data; wire w_empty ; sync_fifo sync_fifo_inst ( .wr_clk( i_ADC_clk ), .wr_rst( i_rst ), .rd_clk( i_clk ), .rd_rst( i_rst ), .din ( i_ADC ), .wr_en ( 1'b1 ), .rd_en ( 1'b1 ), .dout ( w_sync_ADC_data ), .full ( ), .empty ( w_empty ) ); reg [31:0] r_simple_cnt = 32'd0; always @(posedge i_clk)begin if(i_rst == 1'b1) r_simple_cnt <= 32'd0; else if(r_simple_cnt >= SIMPLE_CNT_NUM - 1'b1) r_simple_cnt <= 32'd0; else r_simple_cnt <= r_simple_cnt + 1'b1; end wire w_sample_en = (r_simple_cnt == SIMPLE_CNT_NUM - 1'b1); reg [7:0] r_ADC_data = 8'd0; reg r_ADC_valid = 1'd0 ; always @(posedge i_clk)begin if(i_rst == 1'b1)begin r_ADC_data <= 8'd0; r_ADC_valid <= 1'd0 ; end else if(w_sample_en)begin r_ADC_data <= w_sync_ADC_data; r_ADC_valid <= 1'b1; end else r_ADC_valid <= 1'b0; end assign o_ADC_valid = r_ADC_valid ; assign o_ADC = r_ADC_data ; endmodule ”

下面是将verilog文件改成VHDL文件后的代码: ```vhdl library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity Time_sample is port ( i_clk : in std_logic; i_rst : in std_logic; i_ADC_clk : in std_logic; i_ADC : in std_logic_vector(9 downto 0); o_ADC_valid : out std_logic; o_ADC : out std_logic_vector(9 downto 0) ); end entity; architecture rtl of Time_sample is constant SAMPLE_TIME : integer := 2000000000; constant CLK_TIME : integer := 20; constant SIMPLE_CNT_NUM : integer := SAMPLE_TIME/CLK_TIME; signal w_sync_ADC_data : std_logic_vector(9 downto 0); signal w_empty : std_logic; component sync_fifo is port ( wr_clk : in std_logic; wr_rst : in std_logic; rd_clk : in std_logic; rd_rst : in std_logic; din : in std_logic_vector(9 downto 0); wr_en : in std_logic; rd_en : in std_logic; dout : out std_logic_vector(9 downto 0); full : out std_logic; empty : out std_logic ); end component; signal r_simple_cnt : unsigned(31 downto 0) := (others => '0'); signal r_ADC_data : std_logic_vector(7 downto 0) := (others => '0'); signal r_ADC_valid : std_logic := '0'; begin sync_fifo_inst : sync_fifo port map ( wr_clk => i_ADC_clk, wr_rst => i_rst, rd_clk => i_clk, rd_rst => i_rst, din => i_ADC, wr_en => '1', rd_en => '1', dout => w_sync_ADC_data, full => open, empty => w_empty ); process (i_clk) begin if rising_edge(i_clk) then if i_rst = '1' then r_simple_cnt <= (others => '0'); elsif r_simple_cnt >= SIMPLE_CNT_NUM - 1 then r_simple_cnt <= (others => '0'); else r_simple_cnt <= r_simple_cnt + 1; end if; end if; end process; process (i_clk) begin if rising_edge(i_clk) then if i_rst = '1' then r_ADC_data <= (others => '0'); r_ADC_valid <= '0'; elsif r_simple_cnt = SIMPLE_CNT_NUM - 1 then r_ADC_data <= w_sync_ADC_data(7 downto 0); r_ADC_valid <= '1'; else r_ADC_valid <= '0'; end if; end if; end process; o_ADC_valid <= r_ADC_valid; o_ADC <= r_ADC_data & w_sync_ADC_data(8 downto 0); end architecture; ``` 在VHDL中,需要使用`library`和`use`语句来导入需要使用的库和包。此外,VHDL中没有`wire`类型,需要使用`signal`来声明信号。VHDL中的`if`语句和Verilog中的`if`语句语法有所不同,需要使用`process`语句来实现。VHDL中的赋值语句使用`<=`符号。最后,需要使用`&`符号来实现连接操作。

如何用deepctr 中的DIN模型实现对用户的题目推荐。有用户id 题目id 题目标签id 用户历史做题id、

步骤如下: 1. 安装deepctr库,导入需要的模块: ```python !pip install deepctr import pandas as pd from deepctr.models import DIN from deepctr.inputs import SparseFeat, DenseFeat, get_feature_names ``` 2. 加载数据和特征: 假设数据集已经存储在CSV文件中,可以使用Pandas库加载数据。然后我们需要定义用户和题目的特征类型,以及每个特征的维度和名称。在这个例子中,我们假设用户ID和题目ID是稀疏特征,标签ID是多值稀疏特征,历史做题ID是序列特征,用户性别和年龄是密集特征。 ```python data = pd.read_csv('data.csv') sparse_features = ['user_id', 'item_id', 'label_id'] dense_features = ['age', 'gender'] sequence_features = ['history'] feature_dim = {'user_id': 10000, 'item_id': 10000, 'label_id': 100, 'age': 1, 'gender': 1} embedding_dim = {'user_id': 16, 'item_id': 16, 'label_id': 16} max_len = 50 ``` 3. 处理特征和建立模型: 首先,我们需要将原始数据转换为适用于DIN模型的输入格式,这里使用SparseFeat、DenseFeat、VarLenSparseFeat和get_feature_names等函数进行特征处理。 然后,我们使用DIN模型来训练和预测。DIN模型的输入是用户和题目的特征嵌入向量,以及用户历史做题序列的嵌入向量,输出是题目的兴趣得分。 ```python # 处理特征 sparse_feature_list = [SparseFeat(feat, feature_dim[feat], embedding_dim=embedding_dim[feat]) for feat in sparse_features] dense_feature_list = [DenseFeat(feat, 1) for feat in dense_features] sequence_feature_list = [VarLenSparseFeat(SparseFeat('history', feature_dim['item_id'], embedding_dim=embedding_dim['item_id']), maxlen=max_len)] # 建立模型 model_input = {feat: data[feat] for feat in sparse_features + dense_features + sequence_features} for feat in sequence_features: model_input[feat] = [data[feat].apply(lambda x: [int(i) for i in x.split(',') if i != '']).tolist()] model_input = {name: model_input[feat.name] for name, feat in zip(get_feature_names(sparse_feature_list + dense_feature_list + sequence_feature_list), sparse_feature_list + dense_feature_list + sequence_feature_list)} model = DIN(sparse_feature_list + dense_feature_list + sequence_feature_list, embedding_dim['item_id'], use_negsampling=True) model.compile('adam', 'binary_crossentropy', metrics=['binary_crossentropy']) ``` 4. 训练和预测: 使用训练集进行模型训练,然后使用测试集进行预测。在预测时,我们需要指定用户ID和历史做题序列,模型会返回一个题目ID列表和对应的兴趣得分。我们可以根据得分进行排序,并选取得分最高的题目作为推荐结果。 ```python # 训练模型 model.fit(model_input, data['label'], batch_size=256, epochs=10, validation_split=0.2) # 预测 user_id = 100 history = '1,2,3,4,5' item_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] item_score = model.predict({'user_id': [user_id], 'history': [[int(i) for i in history.split(',') if i != '']] * len(item_list), 'item_id': item_list}) item_score = [(item_list[i], item_score[i]) for i in range(len(item_list))] item_score.sort(key=lambda x: x[1], reverse=True) item_list = [x[0] for x in item_score] ```

相关推荐

帮我完善以下代码 void Check_Key(void) { unsigned char row, col; unsigned int KEY_DOUT,tmp1, tmp2; tmp1 = 0x0800; for(row=0; row<4; row++) //行扫描 { KEY_DOUT = 0X0f00; //输出全为1 KEY_DOUT-= tmp1; //依次输出一个为0 GPIOD->ODR=((GPIOD->ODR&0xf0ff)|KEY_DOUT); tmp1 >>=1; if((GPIO_ReadInputData(GPIOD)&0xf000)<0xf000) //if((KEY_DIN & 0xF0) < 0xF0) //P2输入是否有一位为0 { tmp2 = 0x1000; //用于检测出哪一位为0 for(col=0; col<4; col++) //列扫描 { if(0x00 == (GPIO_ReadInputData(GPIOD) & tmp2)) //找到等于0的列 { key_val = key_Map[row*4 + col];//获取键值 return; //退出循环 } tmp2 <<= 1; //右移1位 } } } } void Key_Event(void) { unsigned int tmp; GPIOD->ODR=((GPIOD->ODR&0xf0ff)|0x0000); tmp = GPIO_ReadInputData(GPIOD); if ((0x00 == key_Pressed) && ((tmp & 0xF000) < 0xF000)) //如果有键按下 { key_Pressed = 1; //按键按下标识位置位 delay_ms(10); //延时去抖 Check_Key(); //获取键 // key_flag = 1; //按键标识置位 } else if ((key_Pressed == 1)&&((tmp & 0xf000) == 0xF000)) //如果按键释放 { key_Pressed = 0; //清除标识位 key_flag = 1; //按键标识位置位 } else { delay_ms(1); } } u8 KEY_Scan(u8 mode) { static u8 key_up=1;//按键按松开标志 if(mode)key_up=1; //支持连按 if(key_up&&(KEY0==0||KEY1==0||WK_UP==1)) { delay_ms(10);//去抖动 key_up=0; if(KEY0==0)return KEY0_PRES; else if(KEY1==0)return KEY1_PRES; else if(WK_UP==1)return WKUP_PRES; }else if(KEY0==1&&KEY1==1&&WK_UP==0)key_up=1; return 0;// 无按键按下 }

给以下代码添加注释#include <reg52.h> #include <intrins.h> #define u8 unsigned char #define u16 unsigned int #define DECODE_MODE 0x09 #define INTENSITY 0x0A #define SCAN_LIMIT 0x0B #define SHUT_DOWN 0x0C #define DISPLAY_TEST 0x0F #define BLOCKS 4 sbit MAX7219_CLK = P2^2; sbit MAX7219_CS = P2^1; sbit MAX7219_DIN = P2^0; u8 code bytes[] = { 0x3e,0x63,0x63,0x7f,0x63,0x63,0x63,0x63, //A 0x7e,0x63,0x63,0x7e,0x63,0x63,0x63,0x7e, //B 0x3e,0x63,0x63,0x60,0x60,0x63,0x63,0x3e, //C }; u8 val[BLOCKS]; u8 character_len = sizeof(bytes) / 8; void delay(u16 x) { u16 i,j; for(i = 0; i < x; i++) for(j = 0;j < 112; j++); } void Max7219_writeByte(u8 dat) { u8 i; MAX7219_CS = 0; for(i = 8; i >= 1; i--) { MAX7219_CLK = 0; MAX7219_DIN = dat & 0x80; // &10000000, 取最高位 dat = dat << 1; MAX7219_CLK = 1; } } void Max7219_singeWrite(u8 index, u8 addr, u8 dat) { MAX7219_CS = 0; Max7219_writeByte(addr); Max7219_writeByte(dat); while(index--) { Max7219_writeByte(0x00); Max7219_writeByte(0x00); } MAX7219_CS = 1; } void Max7219_multiWrite(u8 addr, u8 len, u8* dat) { MAX7219_CS = 0; while(len--) { Max7219_writeByte(addr); Max7219_writeByte(*dat++); } MAX7219_CS = 1; } void Max7219_init(void) { u8 i; for (i = 0; i < BLOCKS; i++) { Max7219_singeWrite(i, SHUT_DOWN, 0x01); // 0x00:shutdown, 0x01:normal Max7219_singeWrite(i, DECODE_MODE, 0x00); // No decode Max7219_singeWrite(i, INTENSITY, 0x03); // 0x00:min, 0x0F:max Max7219_singeWrite(i, SCAN_LIMIT, 0x07); // Display 8 digits Max7219_singeWrite(i, DISPLAY_TEST, 0x00); // 0x00:normal, 0x01:test mode } }

最新推荐

recommend-type

2024年欧洲化学电镀市场主要企业市场占有率及排名.docx

2024年欧洲化学电镀市场主要企业市场占有率及排名.docx
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。

![【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。](https://img-blog.csdnimg.cn/3d6666081a144d04ba37e95dca25dbd8.png) # 2.1 井字棋游戏规则 井字棋游戏是一个两人对弈的游戏,在3x3的棋盘上进行。玩家轮流在空位上放置自己的棋子(通常为“X”或“O”),目标是让自己的棋子连成一条直线(水平、垂直或对角线)。如果某位玩家率先完成这一目标,则该玩家获胜。 游戏开始时,棋盘上所有位置都为空。玩家轮流放置自己的棋子,直到出现以下情况之一: * 有玩家连成一条直线,获胜。 * 棋盘上所有位置都被占满,平局。
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到
recommend-type

BSC关键绩效指标详解:财务与运营效率评估

BSC(Balanced Scorecard,平衡计分卡)是一种企业绩效管理系统,它将公司的战略目标分解为四个维度:财务、客户、内部流程和学习与成长。在这个文档中,我们看到的是针对特定行业(可能是保险或保险经纪)的BSC绩效考核指标汇总,专注于财务类和非财务类的关键绩效指标(KPIs)。 财务类指标: 1. 部门费用预算达成率:衡量实际支出与计划费用之间的对比,通过公式 (实际部门费用/计划费用)*100% 来计算,数据来源于部门的预算和实际支出记录。 2. 项目研究开发费用预算达成率:同样用于评估研发项目的资金管理,公式为 (实际项目研究开发费用/计划费用)*100%。 3. 课题费用预算达成率、招聘费用预算达成率、培训费用预算达成率 和 新产品研究开发费用预算达成率:这些都是人力资源相关开支的预算执行情况,涉及到费用的实际花费与计划金额的比例。 4. 承保利润:衡量保险公司盈利能力的重要指标,包括赔付率和寿险各险种的死差损益(实际死亡率与预期死亡率的差异)。 5. 赔付率:反映保险公司的赔付情况,是业务健康度的一个关键指标。 6. 内嵌价值的增加:代表了保单的价值增长,反映了公司长期盈利能力。 7. 人力成本总额控制率:通过比较实际人力成本与计划成本来评估人力成本的有效管理。 8. 标准保费达成率:衡量公司的销售业绩,即实际收取保费与目标保费的比率。 9. 其他费用比率,如附加佣金、续期推动费用、业务推动费用等,用来评估营销费用的效率。 非财务类指标: 1. 销售目标达成率:衡量销售团队完成预定目标的程度,通过实际销售额与计划销售额的比率计算。 2. 理赔率:体现客户服务质量和效率,涉及保险公司处理理赔请求的速度和成功率。 3. 产品/服务销售收入达成率:衡量产品或服务的实际销售效果,反映市场响应和客户满意度。 这些指标集合在一起,提供了全面的视角来评估公司的经营效率、财务表现以及战略执行情况。通过定期跟踪和分析这些数据,企业可以持续优化策略,提升业绩,确保与整体战略目标的一致性。每个指标的数据来源通常来自于相关部门的预算和实际操作记录,确保信息的准确性。